Answer:
2 1/2 m/s^2 or 2.5m/s^2
Explanation:
From the question
final velocity v =25m/s
Initial velocity u =10m/s
time = 6 seconds
acceleration a = ?
Using the equation for linear motion
v = u + at
25 = 10 + a x 6
25 = 10 + a6
Subtract 10 from both sides
25-10 = 10 + a6 -10
25 - 10 = 10 -10 + a6
15 = a6
Divide both sides by 6
15/6 = a6/6
5/2 = a
a = 2 1/2 m/s^2 or 2.5m/s^2
To solve this problem it is necessary to apply the concepts related to the Period of a body and the relationship between angular velocity and linear velocity.
The angular velocity as a function of the period is described as

Where,
Angular velocity
T = Period
At the same time the relationship between Angular velocity and linear velocity is described by the equation.

Where,
r = Radius
Our values are given as,


We also know that the radius of the earth (r) is approximately

Usando la ecuación de la velocidad angular entonces tenemos que



Then the linear velocity would be,

x

The speed would Earth's inhabitants who live at the equator go flying off Earth's surface is 463.96
1.
The ends of a bar magnet are called poles. It has a north pole and a
south pole. To magnet two things, the poles must be linked oppositely. North to
south and south to north.
Answer:
1768 N
Explanation:
We can solve the problem by using Newton's second law:

where
F is the net force acting on an object
m is the mass of the object
a is its acceleration
In this problem, we have a car of mass
m = 884 kg
And its acceleration is

Substituting into the equation, we find the net force on the car:

As kinetic energy increases, substance temperature increases