1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gre4nikov [31]
3 years ago
9

Which pair shows equivalent expressions?

Mathematics
1 answer:
maria [59]3 years ago
7 0
The equivalent expression is A
You might be interested in
Mike's grandmother opened a savings account in Mike's name and deposit some money into the account. The account pays an unusual
storchak [24]
Do the i p t interest percentage and time the you add the percentage and interest then you multiply that by your time
8 0
3 years ago
1)Give two numbers whose square roots add up to 5.
barxatty [35]

\sqrt{9} +\sqrt{4}=5\\ \\\sqrt[3]{64}+\sqrt[3]{125}=9

⭐ Please consider brainliest! ⭐

✉️ If any further questions, inbox me! ✉️

4 0
4 years ago
Read 2 more answers
3 x 2 2/5 pleaseyou guys are supercalifragilisticexpialidocious
Yuliya22 [10]
7.2 is the answer i hope that helps!!!!!!!!!!!

7 0
3 years ago
SMART STUDENT PLEASE NEED GOOD MATH STUDENT​
tangare [24]

Answer:

Therefore 'x' is equal to 65.4°

Step-by-step explanation:

In Right Angle Triangle ABC

∠ B = 90°

AC = Hypotenuse = 12

CB = Adjacent Side = 5

To Find:

∠ C = x

Solution:

In Right Angle Triangle ABC Cosine Identity we have

\cos C = \frac{\textrm{side adjacent to angle C}}{Hypotenuse}\\

Substituting the values we get

\cos C = \dfrac{CB}{AC}=\dfrac{5}{12}

\angle C = \cos^{-1}(0.4166)=65.37=65.4\°

Therefore 'x' is equal to 65.4°

8 0
3 years ago
Use the form of the definition of the integral given in the theorem to evaluate the integral. ∫ 0 − 2 ( 7 x 2 + 7 x ) d x
Murrr4er [49]

Answer:

\int _{-2}^07x^2+7xdx=\frac{14}{3}

Step-by-step explanation:

The definite integral of a continuous function <em>f</em> over the interval [a,b] denoted by \int\limits^b_a {f(x)} \, dx, is the limit of a Riemann sum as the number of subdivisions approaches infinity. That is,

\int\limits^b_a {f(x)} \, dx=\lim_{n \to \infty} \sum_{i=1}^{n}\Delta x \cdot f(x_i)

where \Delta x = \frac{b-a}{n} and x_i=a+\Delta x\cdot i

To evaluate the integral

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx

you must:

Find \Delta x

\Delta x = \frac{b-a}{n}=\frac{0+2}{n}=\frac{2}{n}

Find x_i

x_i=a+\Delta x\cdot i\\x_i=-2+\frac{2i}{n}

Therefore,

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} f(-2+\frac{2i}{n})

\int\limits^{0}_{-2} {7x^{2}+7x } \, dx=\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})

\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7(-2+\frac{2i}{n})^{2} +7(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{2}{n} \sum_{i=1}^{n} 7[(-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})]\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} (-2+\frac{2i}{n})^{2} +(-2+\frac{2i}{n})\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} 4-\frac{8i}{n}+\frac{4i^2}{n^2} -2+\frac{2i}{n}\\\\\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2

\lim_{n \to \infty}\frac{14}{n} \sum_{i=1}^{n} \frac{4i^2}{n^2}-\frac{6i}{n}+2\\\\\lim_{n \to \infty}\frac{14}{n}[ \sum_{i=1}^{n} \frac{4i^2}{n^2}-\sum_{i=1}^{n}\frac{6i}{n}+\sum_{i=1}^{n}2]\\\\\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\sum_{i=1}^{n}i^2 -\frac{6}{n}\sum_{i=1}^{n}i+\sum_{i=1}^{n}2]

We can use the facts that

\sum_{i=1}^{n}i^2=\frac{n(n+1)(2n+1)}{6}

\sum_{i=1}^{n}i=\frac{n(n+1)}{2}

\lim_{n \to \infty}\frac{14}{n}[ \frac{4}{n^2}\cdot \frac{n(n+1)(2n+1)}{6}-\frac{6}{n}\cdot  \frac{n(n+1)}{2}+2n]\\\\\lim_{n \to \infty}\frac{14}{n}[-n+\frac{2\left(n+1\right)\left(2n+1\right)}{3n}-3]\\\\\lim_{n \to \infty}\frac{14\left(n^2-3n+2\right)}{3n^2}

\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(\frac{n^2-3n+2}{n^2}\right)\\\\\mathrm{Divide\:by\:highest\:denominator\:power:}\:1-\frac{3}{n}+\frac{2}{n^2}\\\\\frac{14}{3}\cdot \lim _{n\to \infty \:}\left(1-\frac{3}{n}+\frac{2}{n^2}\right)\\\\\frac{14}{3}\left(\lim _{n\to \infty \:}\left(1\right)-\lim _{n\to \infty \:}\left(\frac{3}{n}\right)+\lim _{n\to \infty \:}\left(\frac{2}{n^2}\right)\right)\\\\\frac{14}{3}\left(1-0+0\right)\\\\\frac{14}{3}

Thus,

\int _{-2}^07x^2+7xdx=\frac{14}{3}

5 0
4 years ago
Other questions:
  • What is the rational number between 1/6 and 1/12
    15·2 answers
  • Which function represents the price of any computer after a 10% discount? Let x be the original price and P(x) be the discounted
    5·2 answers
  • A square patio has an area of 200 square feet. How long is each side of the patio to the nearest 0.05
    11·1 answer
  • The expression x/x+4 is equal to zero when
    6·2 answers
  • A relation in which every input value<br> has exactly one output value
    5·1 answer
  • What is 38,762 to the nearest hundred
    9·2 answers
  • HELPPPP PLEASEEEeeeeeee
    14·2 answers
  • Please help! (Geometry)
    13·1 answer
  • GOOD AT MATH!! PLEASE HELPPP
    8·2 answers
  • 1/2 divided 8 as a whole number
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!