Answer:
The equilibrium shifts to the left, and the concentration of Ba2+(aq) decreases
Explanation:
Whenever a solution of an ionic substance comes into contact with another ionic compound with which it shares a common ion, the solubility of the ionic substance in solution decreases significantly.
In this case, both BaSO4 and Na2SO4 both possess the SO4^2- anion. Hence SO4^2- anion is the common ion. Given the equilibrium;
BaSO4(s) <—> Ba2+ (aq) + SO4 2- (aq), addition of Na2SO4 will decrease the solubility of BaSO4 due to the presence of a common SO4^2- anion compared to pure water.
This implies that the equilibrium will shift to the left, (more undissoctiated BaSO4) hence decreasing the Ba^2+(aq) concentration.
The volume did not change, it remained at 20 ml
<h3>Further explanation</h3>
Given
20 ml a sample gas at STP(273 K, 1 atm)
T₂=546 K
P₂=2 atm
Required
The volume
Solution
Combined gas Law :
Input the value :
The volume does not change because the pressure and temperature are increased by the same ratio as the initial conditions (to 2x)
The tall trees much of the sun
have you ever been in a forest? if you have, you’ve probably noticed that it’s usually very shady, and not a lot of sunlight hits the ground. That’s cause the tall trees are so dense, the sunlight doesn’t reach the ground
The balanced chemical reaction and or equation for the famous haber or ammonia process would be :
3H2 + N2 => 2NH3.
Answer:
1.196 M NaOH
Explanation:
Molarity = moles/Volume (L)
moles NaOH = mass NaOH/MM NaOH = 12/40.01 = 0.299 moles NaOH
Volume solution = 250 mL = 0.250L
M = 0.299/0.250=1.196 M NaOH