The correct response would be 3. The alkaline earth metals would tend to lose its valence electrons, in this case 2 of them at different energy levels, to form the same respective ion, which is +2.
Answer:
a, g, c
Explanation:
The conversion of the stable cyclopentane into Trans-1, 2dibromocyclopentane will require three step reactions.
The first is to convert the compound into a cyclopentene, through the addition of Bromine water under heat and photons (light). So option A is the first in the order. This will generate 1 bromocyclopentane through halogenation of the alkane. Secondly, a hot and strong base should be added like the NaOEt, EtOH to remove the added bromine and one atom of hydrogen from the resulting 1 bromocyclopentane in the previous reaction. This will yield cyclopentene, thus making the compound more electrophilic. So option g is required. Thirdly, bromine molecules will be added (C) to take up their places at the two electrophilic regions of the compound to produce Trans-1, 2dibromocyclopentane.
<span>THE HIGHEST CONCENTRATION OF HYDROGEN IONS IS LOCATED IN THE INTER-MEMBRANE SPACE. HYDROGEN IONS REACH THE INTER-MEMBRANE SPACE THROUGH PROTEIN CHANNELS EMBEDDED IN THE MITOCHONDRIAL MEMBRANE. THE MAIN FUNCTION OF INTER MEMBRANEIS OXIDATIVE PHOSPHORLATON. ENERGY IS REQUIRED TO MOVE THE HYDROGEN IONS ACROSS THE MEMBRANE BECAUSE THE HYDROGEN IONS ARE MOVING AGAINST THE CONCENTRATION GRADIENT. H+ GOES AGAINST THE CONCENTRATION GRADIENT THE USE OF THE GRADIENT TO DRIVE ATP SYNTHASE. HYDOGEN IONS DRIVE ATP SYNTHASE IN PHTOSYNTHESIS. THIS HAPPENS WHEN HYDROGEN IONS GET PUSHED ACROSS THE MEMBRANE CREATING A HIGH CONCENTRATION INSIDE THE THYLAKOID.</span>
Answer:
control.
Explanation:
during an experiment you are required to maintain a separate group of subjects to collect data on so you will be able to make comparisons from your observations. assuming the watered plants grew, what does that mean? they grew at a quicker rate? slower rate? the same rate? compared to what? you need this control group in order to prove your observations either one way or the other such as "compared to unwatered plants, the watered plants grew at *blank* rate."
The wavelength of a sound wave moving at 340 m/s and with a frequency of 256 Hz is calculated using the the below formula
wavelength = speed of the wave/frequency
speed of the wave = 340 m/s
frequency = 256 Hz
wavelength is therefore = 340/256 = 1.32 m