from kinematics equation if we know that final speed is ZERO and initial speed is given that due to constant deceleration the object will stop in some distance "d" and this distance can be calculated by kinematics


here acceleration due to friction will be same at all different speed
so for 45 km/h speed the distance of stop is 15 m
while at other speed 112.5 km/h the distance will be unknown
now we will have


now divide above two equations


So it will stop in distance 93.75 m
Answer:
A = 15 m/s , B = 18.75 m/s
Explanation:
from the velocity is equal to zero ( at rest ) , you see that velocity is increasing by 3.75 m/s for each second.
I hope that it's a correct answer.
Explanation:
The question is not complete, here is the complete question
<em>"Beatrice and the Elevator Beatrice, a middle school student, is visiting a very tall office building and notices that she feels heavier when the elevator car is traveling up and lighter when the elevator car is traveling down. After making these observations, Beatrice comes back to the building and stands on a bathroom scale that measures her weight as she travels up and down in the elevator.</em>
<em>1. . What question is Beatrice trying to answer?</em>
<em>2. What is one variable Beatrice could change in her investigation? What might she figure out if this
</em>
<em> variable was changed"</em>
1. Beatrice is trying to observe the influence of the elevator movement on her weight, Hence the question is<em> "will the elevator movement cause her weight to change"</em>
therefore moving upward the reading on the scale will increase
Reading=mg+ma
downward
Reading will reduce
Reading=mg-ma
2. The independent variable is the acceleration due to gravity g=9.81m/s^2
while the dependent variables are
i. The elevators acceleration
ii. Beatrice's mass
Groups and periods are two ways of categorizing elements in the periodic table. Periods are horizontal rows (across) the periodic table, while groups are vertical columns (down) the table. Atomic number increases as you move down a group or across a period.