Answer:
The correct answers are "chemical energy into electrical energy" and then "the electrical energy into light energy". Explanation: In the battery-powered flashlight, the battery supplies the chemical energy which makes the electrons to flow in the circuit and constitutes the current
Explanation:
T = 4.25 ms = 4 x 10⁻³ s, the time for rebound
v₁ = 25.5 m/s, the impacting velocty
v₂ = -19.5 m/s, the rebounding velocity (n the opposite directon)
The change in velocity is
v₂ - v₁ = - (25.5+19.5) = -45 m/s
The acceleration is
a = (-45 m/s)/(4 s) = -11.25 m/s²
The negative sign indicates that the final velocity is opposiye to the impact velocty.
Answer: The magnitude of the acceleration is 11.25 m/s²
Answer:
x(t) = -8sin2t
Explanation:
See the attachment for solution
From my solving, we can deduce that w² = 4, and thus, w = 2
Therefore, the general solution is
x(t) = c1 cos2t + c2 sin2t
Considering the final variable, we can conclude that
x(0) = 0
x'(0) = -8 m/s
The final solution, thus
x(t) = -8sin2t
(F)(M)=A
Force times Mass equals Acceleration.
The answer is TRUE.
If the mass increases the number on the left side of the equation increases, thus increasing the right side as well.
Answer:
Elastic potential energy, E = 200 J
Explanation:
It is given that,
Spring constant, K = 4 N/m
initial stretching in the spring, x = 5 m
Finally, it is stretched an additional 5 m i.e. x' = 5 m
Let E is the elastic energy in the spring after Varg stretches the spring. it is given by :


E = 200 J
So, the elastic energy in the spring after Varg stretches the spring is 200 J. hence, this is the required solution.