Answer:
α = 0
, w = w₀
Explanation:
Torque is related to angular acceleration by Newton's second law for rotational motion.
τ = I α
Where τ is the torque, I the moment of inertia and α the angular acceleration.
If we apply an external torque for the sum of all torques to be zero, the angular acceleration must fall to zero
α = 0
Since the acceleration is zero, the angular velocity you have at that time is constantly killed.
w = w₀ + α t
w = w₀ + 0
This being a perfect collision means no energy is lost during the collision. Because this question asks for speed and not velocity, the speed will be the same because the final energy is the same. The speed after the collision would therefore be 1.27 m/s.
Answer:
t = 0.37 seconds
Explanation:
t = (1/4)T
Maximum acceleration is;
a_max = Aω²
In simple harmonic motion, we know that v_max = Aω
Thus, a_max = v_max•ω
ω = a_max/v_max
We know that Period is given by;
T = 2π/ω
From initially, t = (1/4)T so, T = 4t
Thus, 4t = 2π/(a_max/v_max)
t = (2π/4)(v_max/a_max)
We are given;
Maximum velocity;v_max = 1.47 m/s
Max acceleration;a_max =6.24 m/s²
Thus,
t = (2π/4)(1.47/6.24)
t = 0.37 seconds
Well we have two concepts of gravity now. In Newton's concept masses create forces between them. In Einstein's concept mass distorts time and space around it and makes masses move as if there are forces between them.
So whichever concept you prefer it's the presence of mass that creates gravity.