I got the 1.0g of coal producves 35,000 joules which is also 8.36 kcals
(A) We can solve the problem by using Ohm's law, which states:

where
V is the potential difference across the electrical device
I is the current through the device
R is its resistance
For the heater coil in the problem, we know

and

, therefore we can rearrange Ohm's law to find the current through the device:

(B) The resistance of a conductive wire depends on three factors. In fact, it is given by:

where

is the resistivity of the material of the wire
L is the length of the wire
A is the cross-sectional area of the wire
Basically, we see that the longer the wire, the larger its resistance; and the larger the section of the wire, the smaller its resistance.
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Answer:
The speed of the block is 8.2 m/s
Explanation:
Given;
mass of block, m = 2.1 kg
height above the top of the spring, h = 5.5 m
First, we determine the spring constant based on the principle of conservation of potential energy
¹/₂Kx² = mg(h +x)
¹/₂K(0.25)² = 2.1 x 9.8(5.5 +0.25)
0.03125K = 118.335
K = 118.335 / 0.03125
K = 3786.72 N/m
Total energy stored in the block at rest is only potential energy given as:
E = U = mgh
U = 2.1 x 9.8 x 5.5 = 113.19 J
Work done in compressing the spring to 15.0 cm:
W = ¹/₂Kx² = ¹/₂ (3786.72)(0.15)² = 42.6 J
This is equal to elastic potential energy stored in the spring,
Then, kinetic energy of the spring is given as:
K.E = E - W
K.E = 113.19 J - 42.6 J
K.E = 70.59 J
To determine the speed of the block due to this energy:
KE = ¹/₂mv²
70.59 = ¹/₂ x 2.1 x v²
70.59 = 1.05v²
v² = 70.59 / 1.05
v² = 67.229
v = √67.229
v = 8.2 m/s