from kinematics equation if we know that final speed is ZERO and initial speed is given that due to constant deceleration the object will stop in some distance "d" and this distance can be calculated by kinematics


here acceleration due to friction will be same at all different speed
so for 45 km/h speed the distance of stop is 15 m
while at other speed 112.5 km/h the distance will be unknown
now we will have


now divide above two equations


So it will stop in distance 93.75 m
Newtons first law - Objects in the car at rest (The human) will remain at rest unless affected by an unbalanced force. Well the unbalanced force would be the crash and this would set the human in motion and they would ether fly out the car if not wearing a seat belt or if wearing one they would get bad whip lash
Newtons second law - With more mass requires more force, so since the human is pretty light or even if heavy in a big crash there will be so much more from it that this will send the human flying.
Newtons 3rd law - Objects A puts force onto objects b and object b excretes the same amount of force back onto object a, so in a crash the human would hit the car hard and the car would excrete the same amount of force back on the human which would really damage him/her
Answer:
Angular displacement before it stops = 18 rev
Explanation:
Given:
Speed of fan w(i) = 6 rev/s
Speed of fan (Slow) ∝ = 1 rev/s
Final speed of fan w(f) = 0 rev/s
Find:
Angular displacement before it stops
Computation:
w(f)² = w(i) + 2∝θ
0² = 6² + 2(1)θ
0 = 36 + 2θ
2θ = -36
Angular displacement before it stops = -36 / 2
θ = -18
Angular displacement before it stops = 18 rev
Derived Units Table: The Table Shows the List of Derived Units
Quantity Formula SI Derived Unit
Force Mass x Acceleration
Work Energy Force x Displacement Power/Time Kg. m.s-2
Pressure, Stress Force/Area Kg.m-1.s-2
Current density J = I/A A.m-2