Initial velocity of object vi=10.0 cm/s
initial position fo vector of the object is xi=3.09 cm
Final position of vector xf=-5.00cm
then displacement of object s = xf-xi=-5.00-3.09=-8.09cm
time t=2.55 s
s=vit+1/2at2
-5.00 = 11*2.55+1/2*a2.552
a = (-5.00 - 10*2.55*2)/2.552 = 2.94 cm
Acceleration is 2.94 cm.
<h3>What is a
cceleration?</h3>
Speed increase is the name we provide for any cycle where the speed changes. Since speed is a speed and a bearing, there are simply two different ways for you to speed up: change your speed or shift your course or change both. In mechanics, speed increase is the pace of progress of the speed of an item concerning time. Speed increases are vector amounts. The direction of an item's speed increase is given by the direction of the net power following up on that article. An item's typical speed increase throughout some stretch of time is its adjustment of speed separated by the term of the period. Numerically, quick speed increase, in the meantime, is the constraint of the typical speed increase over a little time period. In the terms of analytics, immediate speed increase is the subordinate of the speed vector concerning time.
Learn more about acceleration, refer:
brainly.com/question/27973611
#SPJ4
Answer:
t = 0.24 s
Explanation:
As seen in the attached diagram, we are going to use dynamics to resolve the problem, so we will be using the equations for the translation and the rotation dyamics:
Translation: ΣF = ma
Rotation: ΣM = Iα ; where α = angular acceleration
Because the angular acceleration is equal to the linear acceleration divided by the radius, the rotation equation also can be represented like:
ΣM = I(a/R)
Now we are going to resolve and combine these equations.
For translation: Fx - Ffr = ma
We know that Fx = mgSin27°, so we substitute:
(1) mgSin27° - Ffr = ma
For rotation: (Ffr)(R) = (2/3mR²)(a/R)
The radius cancel each other:
(2) Ffr = 2/3 ma
We substitute equation (2) in equation (1):
mgSin27° - 2/3 ma = ma
mgSin27° = ma + 2/3 ma
The mass gets cancelled:
gSin27° = 5/3 a
a = (3/5)(gSin27°)
a = (3/5)(9.8 m/s²(Sin27°))
a = 2.67 m/s²
If we assume that the acceleration is a constant we can use the next equation to find the velocity:
V = √2ad; where d = 0.327m
V = √2(2.67 m/s²)(0.327m)
V = 1.32 m/s
Because V = d/t
t = d/V
t = 0.327m/1.32 m/s
t = 0.24 s
The Answer is D
Because you add all of them to equal 9 atoms
Answer:
a)48900 metros
b)0.36875 metros
c)75634 metros
d)9.876 metros
Explanation:
Hola, para resolver debemos convertir unidades utilizando equivalencias
a) 48.9 km
1 kilometro = 1000 metros
48.9 x 1000 = 48900 metros
b) 36.875 cm
1 centímetro =0.01 metros
36.875 x 0.01 = 0.36875 metros
c) 756,34 hm
1 hectómetro= 100 metros
756.34 x 100 = 75634 metros
d) 9876 mm
1 milímetro = 0.001 m
9876 x 0.001 = 9.876 metros