Answer:


Explanation:
if

and g=9.81 m/s2=32.16 ft/s2
and
W=m*g
we can just replace de mass and gravity and we have


This is the same question that I just answered.
Have present the definition of acceleration:
a = Δv / Δt, this is change in velocity per unit of time.
a and v are in bold to mean that they are vectors.
1) a body traveling in a straight line and increasing in speed: CORRECT:
Acceleration is the change in velocity, either magnitude or direction or both. So, a body increasing in speed is accelerated.
2) a body traveling in a straight line and decreasing in speed: CORRECT
A decrease in speed is a change in velocity, so it means acceleration.
3) a body traveling in a straight line at constant speed: FALSE.
That body is not changing either direction or speed so its motion is not accelerated but uniform.
4) a body standing still : FALSE.
That body is not changind either direction or speed.
5) a body traveling at a constant speed and changing direction: CORRECT.
The change in direction means that the body is accelerated. The acceleration due to change in direction is named centripetal acceleration.
Answer:
It is likely that the citizens have very limited water for agriculture and personal uses and it is stored in their homes, while in the U.S we have water ready at the moment we need it and can access it with faucets.
Explanation:
Answer:
the distance travelled from the bullet to the target is 391m
Explanation:
Hello! To solve this exercise we must follow the following steps.
1. the bullet travels with constant speed which means that the distance traveled to the target is given by the following equation
X=(V1)(T1)

where
X=target distance
V1=bullet speed=460m/s
T1=
time it takes for the bullet to reach the target
2. The distance the sound travels is given by the following equation (it is the same as the distance from the person to the target)
X=(V2)(T2)

X=
target distance
V2= speed of sound=340m/s
T2= time it takes the sound of the Bullet to return.
3. The total time it takes for the person to hear the bullet(T=2s) is the sum of the time it takes for the bullet to reach the target, plus the time it takes for the sound to reach the person, with the above we infer the following equation
T=T1+T2
2=T1+T2
4. Finally we use the equations found in step 1 and 2 to find the distance traveled using algebra.

the distance travelled from the bullet to the target is 391m