Answer:
Demand: q = -50p + 1200
Supply: q = 40p
Step-by-step explanation:
First let's define our variables.
q = quantity of T-shirts
p = price
We know that when p = 12, q = 600. When p increases by 1, q decreases by 50. So this is a line with slope -50 that passes through the point (12, 600). Using point-slope form to write the equation:
q - 600 = -50 (p - 12)
Converting to slope-intercept form:
q - 600 = -50p + 600
q = -50p + 1200
Similarly, we know that when p = 9.75, q = 600 - 210 = 390. When p increases by 1, q increases by 40. So this is a line with slope 40 that passes through the point (9.75, 390). Using point-slope form to write the equation:
q - 390 = 40 (p - 9.75)
Converting to slope-intercept form:
q - 390 = 40p - 390
q = 40p
You basically add 17.50+17.50=35 and add 35+35=70, reason being is because the 35 is the 1/2 and 17.50 is the 1/4 so 70 is your answer
The slope-intercept form<span> is simply the way of writing the equation of a line so that the </span>slope<span> </span><span>Often, this </span>form<span> is called y = mx + b
</span>form<span>.</span>
Answer:
- <u>Question 1:</u>
<u />
<u />
- <u>Question 2:</u>
<u />
<u />
- <u>Question 3:</u>
<u />
<u />
- <u>Question 4:</u>
<u />
Explanation:
<u>Question 1: Write down the differential equation the mass of the bacteria, m, satisfies: m′= .2m</u>
<u></u>
a) By definition: 
b) Given: 
c) By substitution: 
<u>Question 2: Find the general solution of this equation. Use A as a constant of integration.</u>
a) <u>Separate variables</u>

b)<u> Integrate</u>


c) <u>Antilogarithm</u>



<u>Question 3. Which particular solution matches the additional information?</u>
<u></u>
Use the measured rate of 4 grams per hour after 3 hours

First, find the mass at t = 3 hours

Now substitute in the general solution of the differential equation, to find A:

Round A to 1 significant figure:
<u>Particular solution:</u>

<u>Question 4. What was the mass of the bacteria at time =0?</u>
Substitute t = 0 in the equation of the particular solution:
