Answer:
we will take a 100g sample of this solution for our convenience
so , there is 15 g kBr in this 100g solution
we know that molality is the number if moles of solute / mass of solvent in kg
we need to find the number of moles in 15g kBr
no of moles = 15/119 s
moles = 0.126 moles/ 100g
multiplying both the numerator and the denominator by 10 to get 1 kg in denominator
= 1.26 moles / 1 kg
Hence, the molality is 1.26
would appreciate a brainliest
Nuclear chemistry is the subfield of chemistry dealing with radioactivity, nuclear processes, such as nuclear transmutation, and nuclear properties.
It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear wastestorage or disposal site.
It includes the study of the chemical effects resulting from the absorption of radiation within living animals, plants, and other materials. The radiation chemistry controls much of radiation biology as radiation has an effect on living things at the molecular scale, to explain it another way the radiation alters the biochemicals within an organism, the alteration of the biomolecules then changes the chemistry which occurs within the organism, this change in chemistry then can lead to a biological outcome. As a result, nuclear chemistry greatly assists the understanding of medical treatments (such as cancerradiotherapy) and has enabled these treatments to improve.
It includes the study of the production and use of radioactive sources for a range of processes. These include radiotherapy in medical applications; the use of radioactive tracers within industry, science and the environment; and the use of radiation to modify materials such as polymers.[1]
It also includes the study and use of nuclear processes in non-radioactive areas of human activity. For instance, nuclear magnetic resonance (NMR) spectroscopy is commonly used in synthetic organic chemistry and physical chemistry and for structural analysis in macromolecular chemistry.
The first to do is to isolate the constant, k, to one side. The rate expression would then be:
k = rate/ <span>[A][B]^2
This constant, k, will be the same for the given reaction at a certain temperature. Then, we can relate a second rate to this reaction.
</span>rate1/ [A1][B1]^2 = rate2/ [A2][B2]^2
First question:
0.0810 / [A1][B1]^2 = rate2/ <span>[A2/2][3B2]^2
rate2 = (</span>0.0810 [A2/2][3B2]^2 )/ [A1][B1]^2
rate2 = 0.3645 M/s
Second Equation:
0.0810 / [A1][B1]^2 = rate2/ <span>[A2/2][3B2]^2
rate2 = (</span>0.0810 [3A2][B2/2]^2 )/ [A1][B1]^2
<span>rate2 = 0.0608 M/s</span>
Answer:
selective breeding
Explanation:
Example: pretend that rabbits can only be brown or black and black is dominant. If only the brown rabbits reproduce it will eventually be more common Hope this helps
Assuming that the object started in the ground state, any object that has lost one or more electrons would have a positive change because there would be more protons than electrons present. Therefore, the positive charge of the protons would preside over the negative change of the electrons.
Hope this helps.