It indicates the number of moles of reactants and products
Explanation:
The coefficients in front of the reactants and products in a chemical reaction represents the number of moles of reactants and products.
Every reaction is made up of equal number of moles of reactants and products. Thus, chemical equations are written in such a way to obey the law of conservation of matter.
The numbers used are usually whole numbers and the are very important in stoichiometry.
learn more:
Number of moles brainly.com/question/1841136
#learnwithBrainly
Answer:
The energy released in the decay process = 18.63 keV
Explanation:
To solve this question, we have to calculate the binding energy of each isotope and then take the difference.
The mass of Tritium = 3.016049 amu.
So,the binding energy of Tritium = 3.016049 *931.494 MeV
= 2809.43155 MeV.
The mass of Helium 3 = 3.016029 amu.
So, the binding energy of Helium 3 = 3.016029 * 931.494 MeV
= 2809.41292 MeV.
The difference between the binding energy of Tritium and the binding energy of Helium is: 32809.43155 - 2809.412 = 0.01863 MeV
1 MeV = 1000keV.
Thus, 0.01863 MeV = 0.01863*1000keV = 18.63 keV.
So, the energy released in the decay process = 18.63 keV.
Answer:
The correct order it b. always add acid last.
Explanation:
Adding acid first could result on a violent reaction and heat or fumes can be generated. The best approach is to always add all the water or non-acid component first, or add a significant portion before adding the acid slowly to the mixture.