6.16441 which rounds to 6.2 in the tenths place
Take the derivative:
g’(x) = 12x^3 - 24x^2
Set equal to zero and solve:
0 = 12x^3 - 24x^2
0 = 12x^2 (x - 2)
x = 0 or x = 2
Plug back into original
g(0) = 3(0^4) - 8(0^3)
g(0) = 0 - 0
g(0) = 0
g(2) = 3(2^2) - 8(2^3)
g(2) = 3(4) - 8(8)
g(2) = 12 - 64
g(2) = -52
There is an absolute max at (0,0) or when x = 0
-----------------------------------------------
Information Given:
-----------------------------------------------
ON = 7x - 9
LM = 6x + 4
MN = x - 7
OL = 2y - 7
-----------------------------------------------
Since it is a parallelogram:
-----------------------------------------------
ON = LM and
MN = OL
-----------------------------------------------
ON = LM:
-----------------------------------------------
7x - 9 = 6x + 4
-----------------------------------------------
Subtract 6x from both sides:
-----------------------------------------------
x - 9 = 4
-----------------------------------------------
Add 9 to both sides:
-----------------------------------------------
x = 13
-----------------------------------------------
MN = OL:
-----------------------------------------------
x - 7 = 2y - 7
-----------------------------------------------
Sub x = 13:
-----------------------------------------------
13 - 7 = 2y - 7
-----------------------------------------------
Simplify:
-----------------------------------------------
6 = 2y - 7
-----------------------------------------------
Add 7 on both sides:
-----------------------------------------------
13 = 2y
-----------------------------------------------
Divide by 2:
-----------------------------------------------
y = 13/2
-----------------------------------------------
Answer: x = 13, y = 13/2 (Answer D)
-----------------------------------------------
Answer:
Thx for the points
Step-by-step explanation: