Answer:
Planets that are close to the sun have shorter years, and planets that are farther have longer years, because of how fast/slow it orbits the sun.
Explanation:
Answer:
The ball will reach the ground in 0.8s
Option C
Explanation:
Given:
- Takes t = 0.8 s for ball to reach ground when thrown horizontal from top of a building.
Find:
If it had been thrown with twice the speed in the same direction, it would have hit the ground in how many second.
Solution:
- We know that the amount of time taken to hit the ground is determined by the vertical distance i.e height at which it is thrown. The displacement of ball from top is given by:
S_y = S_o + V_i,y*t + 0.5*g*t^2
- We know that the S_o = height of the building.
We also know that the ball os thrown horizontally; hence, y-component of initial velocity is zero. V_y,i = 0
0 = h + 0 + 0.5*g*t^2
- Hence, the time taken t is:
t = sqrt ( 2h / g)
- The time taken to reach the ground is independent of the initial speed. Hence, the ball will reach the ground in 0.8s .
When t=2, the ball has fallen d(2) = 16 (2²) = 64 feet .
When t=5, the ball has fallen d(5) = 16 (5²) = 400 feet .
Distance fallen from t=2 until t=5 is (400 - 64) = 336 feet.
Time period between t=2 until t=5 is (5 - 2) = 3 seconds.
Average speed of the ball from t=2 until t=5 is
(distance covered) / (time to cover the distance)
= 336 feet / 3 seconds = 112 feet per second.
That's what choice-C says.