Answer:
maximum speed of the bananas is 18.8183 m/s
Explanation:
Given data
amplitude A = 23.195 cm
spring constant K = 15.2676 N/m
mass of the bananas m = 56.9816 kg
to find out
maximum speed of the bananas
solution
we know that radial oscillation frequency formula that is = √(K/A)
radial oscillation frequency = √(15.2676/23.195)
radial oscillation frequency is 0.8113125 rad/s
so maximum speed of the bananas = radial oscillation frequency × amplitude
maximum speed of the bananas = 0.8113125 × 23.195
maximum speed of the bananas is 18.8183 m/s
Answer:
166 666 666.7 years
Explanation:
We start the question by making the units uniform. We are told that the continents move at 3 cm/year = 0.03 m/year.
We are also told that the continents are now 5000 km = 5 000 000 m apart
So to calculate the time it took for them to be this far apart
t = distance/speed
t = 5 000 000 m/(0.03 m/year) = 166 666 666.7 years
Since you already gave us the weight of the 2.5-kg box,
we don't even need to know what the distance is, just
as long as it doesn't change.
Look at the formula for the gravitational force:
F = G m₁ m₂ / R² .
If 'G', 'm₁' (mass of the Earth), and 'R' (distance from the Earth's center)
don't change, then the Force is proportional to m₂ ... mass of the box,
and you can write a simple proportion:
(6.1 N) / (2.5 kg) = (F) / (1 kg)
Cross-multiply: (6.1 N) (1 kg) = (F) (2.5 kg)
Divide each side by (2.5 kg): F = (6.1N) x (1 kg) / (2.5 kg) = 2.44 N .