Answer:
=118.8 K= 154.2°C
Explanation:
COP_max of carnot heat pump= 
where T_H and T_C are temperatures of hot and cold reservoirs
Also COP=
in the question 
⇒
heat is added directly to be as efficient as via heat pump

and T_H= 24° C= 297 K

on calculating the above equation we get
=118.8 K
the outdoor temperature for efficient addition of heat to interior of home
=118.8 K= 154.2°C
Answer: the answer should be 6,720 decameters.
Answer:
15.19°, 31.61°, 51.84°
Explanation:
We need to fin the angle for m=1,2,3
We know that the expression for wavelenght is,

Substituting,


Once we have the wavelenght we can find the angle by the equation of the single slit difraction,

Where,
W is the width
m is the integer
the wavelenght
Re-arrange the expression,

For m=1,

For m=2,

For m=3,

<em>The angle of diffraction is directly proportional to the size of the wavelength.</em>
Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec