Answer:
(c) position
Explanation:
From the work-energy theorem, the workdone by a force on a body causes a change in kinetic energy of the body.
But, remember that the work done (W) by a force (F) on a body is the product of the force and the distance d, moved by the body caused by the force. i.e
W = F x d
This distance is a measure of the position of the body at a given instance.
Therefore, the work done is given by the force as a function of distance (or position).
Answer:
Zinc and Neon!
Explanation:
zinc is an element that is a transition metal and neon is a noble gas
The statement that is true is that positively charged objects attract negatively charged objects. This is due to a law that states 'like forces attract while unlike forces repel. This same concept applies to magnetism. If you put two similar poles together, for example; if you place two south poles together. You feel a separating force between the two poles. But if you place two opposite poles together they attract each other. Hope i helped. <span />
Answer:
5 m
Explanation:
From the question,
v = λf....................... Equation 1
Where v = speed of the sound wave, λ = wavelength of the sound wave, f = frequency of the sound wave.
make λ the subject of the equation
λ = v/f..................... Equation 2
Given: v = 150 cm/s = 1.5 m/s, f = 0.3 hz.
Substitute these values into equation 2
λ = 1.5/0.3
λ = 5 m.
Answer:
The friction force is 250 N
Explanation:
The desk is moving at constant velocity. This means that its acceleration is zero: a = 0. Newton's second law states that the resultant of the forces acting on the desk is equal to the product between mass (m) and acceleration (a):

In this case, we know that the acceleration is zero: a = 0, so also the resultant of the forces must be zero:
(1)
We are only interested in the forces acting along the horizontal direction, since it is the direction of motion. There are two forces acting in this direction:
- the pull, forward, F = 250 N
- the friction force, backward, 
Given (1), we have

So the force of friction must be equal to the pull:
