Answer:
F > W * sin(α)
Explanation:
The force needed for the box to start sliding up depends on the incline (α).
The external forces acting on the box would be the weight, the normal reaction and the lifting force that is applied to make it slide up.
These forces can be decomposed on their normal and tangential (to the slide plane) components.
The weight will be split into
Wn = W * cos(α) (in normal direction)
Wt = W * sin(α) (in tangential direction)
The normal reaction will be alligned with the normal axis, and will be equal to -Wn
N = -W* cos(α) (in normal direction)
To mke the box slide up, a force must be applied, that is opposite to the tangential component of the weight and at least a little larger
F > |-W * sin(α)| (in tangential direction)
Answer:
The biggest reasons the U.S. hasn't adopted the metric system are simply time and money. When the Industrial Revolution began in the country, expensive manufacturing plants became a main source of American jobs and consumer products.
Explanation:
Explanation:
It is given that,
Mass of the passenger, m = 75 kg
Acceleration of the rocket, 
(a) The horizontal component of the force the seat exerts against his body is given by using Newton's second law of motion as :
F = m a

F = 3675 N
Ratio, 

So, the ratio between the horizontal force and the weight is 5 : 1.
(b) The magnitude of total force the seat exerts against his body is F' i.e.


F' = 3747.7 N
The direction of force is calculated as :



Hence, this is the required solution.
<span>The time it takes for one wavelength to pass a fixed point is known as PERIOD.
In fact, the period is defined as the time it takes a wave to make one complete oscillation: since the wavelength is the distance between two consecutive points of the wave with same shape, it means that the time it takes for one wavelength to pass a fixed point in space is exactly the period.</span>