Answer:
293k
Explanation:
In this question, we are asked to calculate the temperature to which the reaction must be heated to double the equilibrium constant.
To find this value, we will need to use the Van’t Hoff equation.
Please check attachment for complete solution
Answer:
1362000 kgm/s
Explanation:
So the total mass combination of the plane and the people inside it is
M = 35000 + 160*65 = 45400 kg
After 15 seconds at an acceleration of 2 m/s2, the plane speed would be
V = 2*15 = 30 m/s
So the magnitude of the plane 15s after brakes are released is
MV = 45400 * 30 = 1362000 kgm/s
Answer: 5000N
Explanation:
The basic principle of a circular orbit is that Fg = m × ac, so as we have the mass and the centripetal acceleration (also called normal acceleration) we just have to operate. Fg = 1000kg × 5m/s² = 5000N
Answer:
∑Fy = 0, because there is no movement, N = m*g*cos (omega)
Explanation:
We can solve this problem with the help of a free body diagram where we show the respective forces in each one of the axes, y & x. The free-body diagram and the equations are in the image attached.
If the product of mass by acceleration is zero, we must clear the normal force of the equation obtained. The acceleration is equal to zero because there is no movement on the Y-axis.
When I see the word "which" at the beginning of your question,
I just KNOW that there's a list of choices printed right there
next to he part that you copied, and for some mysterious
reason, you decided not to let us see the choices.
Any flashlight, light bulb, laser, or spark ... like lightning ...
converts some electrical energy into some light energy.