Answer:
424088766.068 m
Explanation:
Radius of the circular orbit that the satellite is 2.6 Earth radii (r) = 2.6 R
R = Radius of earth = 6371000 m (mean radius)
In order to find the distance that the satellite travels in 5.89 hours to complete one complete revolution is the circumference of the circular orbit
Circumference of a circle = 2×π×r
⇒Distance travelled in 5.89 hours = 2×π×2.6 R
⇒Distance travelled in 5.89 hours = 2×π×2.6×6371000
⇒Distance travelled in 5.89 hours = 104078451.3393m
Distance travelled in 1 hour = 104078451.3393/5.89 = 17670365.252 m
∴ Distance travelled in 24 hours = 17670365.252×24 = 424088766.068 m
Ok so use trigonometry to work out the vertical component of velocity.
sin(25) =opp/hyp
rearrange to:
30*sin(25) which equals 12.67ms^-1
now use SUVAT to get the time of flight from the vertical component,
V=U+at
Where V is velocity, U is the initial velocity, a is acceleration due to gravity or g. and t is the time.
rearranges to t= (V+u)/a
plug in some numbers and do some maths and we get 2.583s
this is the total air time of the golf ball.
now we can use Pythagoras to get the horizontal component of velocity.
30^2-12.67^2= 739.29
sqrt739.29 = 27.19ms^-1
and finally speed = distance/time
so--- 27.19ms^-1*2.583s= 70.24m
The ball makes it to the green, and the air time is 2.58s
Answer:
time of collision is
t = 0.395 s

so they will collide at height of 5.63 m from ground
Explanation:
initial speed of the ball when it is dropped down is

similarly initial speed of the object which is projected by spring is given as

now relative velocity of object with respect to ball

now since we know that both are moving under gravity so their relative acceleration is ZERO and the relative distance between them is 6.4 m



Now the height attained by the object in the same time is given as



so they will collide at height of 5.63 m from ground
I think the answer is letter B
Explanation:
Below is an attachment containing the solution.