Answer:
Determining flammability can be as simple as holding a sample of the substance over a match. If it burns, it is flammable, leading to additional experiments to find more properties. Measuring the heat given off by the substance when it burns gives the heat of combustion.
Explanation:
To answer this question, we will use the following equation:
<span>ln(P2/P1) = (∆Hvap/R)*((1/T1) - (1/T2))
</span>
Now we examine the givens of the problem and transform to standard units if required:
<span>∆Hvap = 30.5 kJ/mol
</span>R is a constant = <span>8.314 x 10^-3 kJ K^-1 mol^-1
T1 </span><span>= 91 celcius = 91 + 273= 364 Kelvin
</span>T2 = 20 celcius = 20 + 273 = 293 k3lvin
P1 is the standard atmospheric pressure = 760 mmHg
P2 is the value to be calculated
Substitute with these values in the equation:
ln(P2/760) = (30.5 / 8.314 x 10^-3) x ((1 / 364) - (1 / 293))
ln(P2/760) = - 2.4662 (Take the exponential both sides to eliminate the ln)
P2 / 760 = e^(-2.4462) = 0.0866
P2 = 0.0866 x 760 = 65.816 mmHg
Answer is: B. designing an experiment to test the plum pudding model.
Rutherford demonstrate that J.J Thompson's Plum Pudding model was not accurate, but before testing, he thought that plum pudding model is correct.
Rutherford theorized that atoms have their charge concentrated in a very small nucleus.
This was famous Rutherford's Gold Foil Experiment: he bombarded thin foil of gold with positive alpha particles (helium atom particles, consist of two protons and two neutrons).
Rutherford observed the deflection of alpha particles on the photographic film and notice that most of alpha particles passed straight through foil.
That is different from Plum Pudding model, because it shows that most of the atom is empty space.
Forming oxygen by bubbling fluorine through water.
Phosphorus has 5 valence
valence electrons is located to their group#
yes because of TAVE available valence electrons