Answer: Option (D) is the correct answer.
Explanation:
Valence shell is the shell present on the outermost core of an atom and electrons present in the valence shell are known as valence electrons.
If an atom has completely filled valence shell then it means the atom is not reactive in nature because it is already stable.
But when an atom has less than eight electrons in its valence shell then it means to attain stability the atom will readily attract electrons towards itself.
As the given element 1 has 8 electrons in its valence shell. Hence, it is not reactive in nature but element 2 has 6 valence electrons. So, in order to attain stability element 2 will readily attract 2 electrons from a donor atom.
Thus, we can conclude that element 2 is more reactive because it does not have a full valence shell, so it will attract electrons.
Answer:
Compounds 1 and 2 are not the same
Explanation:
To solve this question we need to find the molecular formula of the compounds converting the mass of each atom to moles. Molecular formula is defined as the simplest whole number ratio of atoms present in a molecula:
Compound 1:
<em>Moles Tin: </em>
5.63g Sn * (1mol / 118.7g) = 0.04743 moles
<em>Moles Cl:</em>
3.37g Cl * (1mol / 35.45g) = 0.09506 moles
Ratio Cl:Sn
0.09506 moles / 0.04743 moles = 2
Molecular formula SnCl₂
Compound 2:
<em>Moles Tin: </em>
2.5g Sn * (1mol / 118.7g) = 0.02106 moles
<em>Moles Cl:</em>
2.98g Cl * (1mol / 35.45g) = 0.08406 moles
Ratio Cl:Sn
0.08406 moles / 0.02106 moles = 4
Molecular formula SnCl₄
Compounds 1 and 2 are not the same because molecular formulas are different.
The calculated enthalpy values are as follows:
- Total enthalpy of reactants = -103.85 KJ/mol
- Total enthalpy of products = -2057.68 KJ/mol
- Enthalpy of reaction = -1953.83 kJ/mol
<h3>What is the enthalpy of the reaction?</h3>
The enthalpy of the reaction is determined as follows:
- Enthalpy of reaction = Total enthalpy of products -Total enthalpy of reactants
- Total enthalpy of reactants = (ΔHf of Reactant 1 x Coefficient) + (ΔHf of Reactant 2 x Coefficient)
- Total enthalpy of products= (ΔHf of Product 1 x Coefficient) + (ΔHf of Product 2 x Coefficient)
Equation of reaction equation: C₃H₈ (g) + 5 O(g) → 4 H₂O(g) + 3CO₂(g)
Total enthalpy of reactants = (-103.85 * 1) + (0 * 5)
Total enthalpy of reactants = -103.85 + 0
Total enthalpy of reactants = -103.85 KJ/mol
Total enthalpy of products = (-393.51 * 4) +(-241.82 * 3)
Total enthalpy of products = (-1574.04) + (-483.64)
Total enthalpy of products = -2057.68 KJ/mol
Enthalpy of reaction = -2057.68 KJ/mol -(-103.85 KJ/mol)
Enthalpy of reaction = -1953.83 kJ/mol
In conclusion, the enthalpy of the reaction is determined from the difference between the total enthalpy of products and reactants.
Learn more about enthalpy of reaction at: brainly.com/question/14047927
#SPJ1
The answer is C. Strong nuclear force. Subatomic particles in the core of an atom (protons and neutrons) are held together by this type of force. The force is known to be one of the 4 fundamental forces of our universe.