Answer:
2,375 cans
Explanation:
The strategy here is to use the information given to calculate the lethal dosage contained in the number of cans we will compute.
We know the lethal dosage is
Ld = 10.0 g caffeine
and we also know that the oncentration of caffeine is:
2.85 mg/ oz
So our problem simplifies to calculate how many oz will contain the lethal dose, and then given the ounces per can determine how many cans are required.
First convert the lethal dose in grams to mg:
Ld =( 10 g x 1000 mg ) = 10,000 mg caffeine
10,000 mg x ( 1 Oz / 2.85 mg ) = 28,500 oz
28500 oz x ( 1 can/12 oz ) = 2,375 cans
We could also have calculated it in one step using conversion factors:
Number of cans = 10000 mg x 1 oz/ 2.85 mg x 1 can / oz = 2,375 cans
Answer:
chemical change
Explanation:
In chemical change , considerable amount of heat is used , hence a change in substance formed
Answer: alright now listen fe203(s)=567.66666
Explanation:
Answer:
11.6 mol O₂
Explanation:
- C₇H₁₆ + 11 O₂ → 7 CO₂ + 8 H₂O
In order to solve this problem we need to <u>convert moles of carbon dioxide (CO₂) into moles of oxygen gas (O₂)</u>. To do so we'll use a conversion factor containing the <em>stoichiometric coefficients</em> of the balanced reaction:
- 7.4 mol CO₂ *
= 11.6 mol O₂
The first option: the basic unit of the nervous system