Answer:
<u>1. Emily scored 60 points in the first round</u>
<u>2. Emily scored minus 30 points in the second round</u>
<u>3. Emily's final score is 15 points.</u>
Step-by-step explanation:
1. Let's review all the information given to us to answer the questions correctly:
Points awarded for a correct answer = 20
Points deducted for a incorrect answer = 10
2. Let's calculate the score of Emily in the first round:
Score = 7 * 20 - 8 * 10
Score = 140 - 80
Score = 60
<u>Emily scored 60 points in the first round</u>
<u>3. </u>Let's calculate the score of Emily in the second round:
Score = 4 * 20 - 11 * 10
Score = 80 - 110
Score = - 30
<u>Emily scored minus 30 points in the second round</u>
<u>4. </u>Let's calculate the final score of Emily:
Final score = (Score 1st round + Score 2nd round)/2
Final score = (60 + - 30)/2
Final score = (60 - 30)/2 = 30/2 = 15
<u>Emily's final score is 15 points.</u>
Answer:
<em><u>From my research on the internet, the image attached supports this problem. The two lines are parallel, as supported by the converse of corresponding angles postulate. It states that: If a transversal intersects two lines and the corresponding angles are congruent, then the lines are parallel.</u></em>
Answer:
The length of a side of the square is 6.3 units.
Step-by-step explanation:
When given vertices for a given shape, the length of the side is calculated using the formula:
√(x2 - x1)² + (y2 - y1)²
When given vertices (x1 , y1) and (x2 , y2)
Square ABCD has vertices A(-2,-3), B(4, -1), C(2,5), and D(-4,3). Find the length of a side
Side AB : A(-2,-3), B(4, -1)
√(x2 - x1)² + (y2 - y1)²
= √(4 -(-2))² + (-1 -(-3))²
= √ 6² + 2²
= √36 + 4
= √40
= 6.3245553203
≈ 6.3 units
B(4, -1), C(2,5),
√(x2 - x1)² + (y2 - y1)²
= √ (2- 4)² + (5- (-1))²
= √-2² + 6²
= √4 + 36
= √40
= 6.3245553203
≈ 6.3 units
C(2,5), D(-4,3).
√(x2 - x1)² + (y2 - y1)²
= √(-4 - 2)² + (3 - 5)²
= √-6² + -2²
= √36 + 4
= √40
= 6.3245553203
≈ 6.3 units
A(-2,-3), D(-4,3).
√(x2 - x1)² + (y2 - y1)²
= √(-4 -(-2))² + (3 - (-3))²
= √-2² + 6²
= √4 + 36
= √40
= 6.3245553203
≈ 6.3 units