9514 1404 393
Answer:
x = 60
Step-by-step explanation:
The angle x is half the sum of the intercepted arcs:
x = (40 +80)/2
x = 60
Answer:
54
Step-by-step explanation: you add 35 and 11 together then subtract 100 by the number you got to get the anwser
Answer:
Simple Interest: A=P(1+rt)
A=15000(1+(0.1*4.2))
A=$21,300
Compound Interest:A=P(1+r/n)^nt
A=15000(1+0.1/4.2)^1*4.2
A=$64,500
Step-by-step explanation:
Answer:
There are a total of 23 cars with air conditioning and automatic transmission but not power steering
Step-by-step explanation:
Let A be the cars that have Air conditioning, B the cars that have Automatic transmission and C the cars that have pwoer Steering. Lets denote |D| the cardinality of a set D.
Remember that for 2 sets E and F, we have that

Also,
|E| = |E ∩F| + |E∩F^c|
We now alredy the following:
|A| = 89
|B| = 99
|C| = 74

|(A \cup B \cup C)^c| = 24
|A \ (B U C)| = 24 (This is A minus B and C, in other words, cars that only have Air conditioning).
|B \ (AUC)| = 65
|C \ (AUB)| = 26

We want to know |(A∩B) \ C|. Lets calculate it by taking the information given and deducting more things
For example:
99 = |B| = |B ∩ C| + |B∩C^c| = 11 + |B∩C^c|
Therefore, |B∩C^c| = 99-11 = 88
And |A ∩ B ∩ C^c| = |B∩C^c| - |B∩C^c∩A^c| = |B∩C^c| - |B \ (AUC)| = 88-65 = 23.
This means that the amount of cars that have both transmission and air conditioning but now power steering is 23.
Answer:
We have the next relation:
A = (b*d)/c
because we have direct variation with b and d, but inversely variation with c.
Now, if we have 3d instead of d, we have:
A' = (b*(3d))/c
now, we want A' = A. If b,c, and d are the same in both equations, we have that:
3bd/c = b*d/c
this will only be true if b or/and d are equal to 0.
If d remains unchanged, and we can play with the other two variables we have:
3b'd/c' = bd/c
3b'/c' = b/c
from this we can took that: if c' = c, then b' = b/3, and if b = b', then c' = 3c.
Of course, there are other infinitely large possible combinations that are also a solution for this problem where neither b' = b or c' = c