Answer:
A and C I believe
Step-by-step explanation:
Because when you take 7.429 another nine rounds the 2 and it is higher than 5 so it would make that 7.43 and for C 7.433 the second 3 is lower than 5 so it doesnt change anything, since 5 and above give it a shove and 4 and below let it go, so I believe its A and C
Answer:
40°
Step-by-step explanation:
The reference angle is the positive acute angle created by the terminal arm and the x-axis.
The highlighted red in the picture below shows what we're looking for.
The arm rotated 220° (but 'backwards' so the value given is negative).
|-220°| - 2(90°) <= Subtract two right angles for two quadrants
= 220° - 2(90°)
= 220° - 180°
= 40°
Therefore, the reference angle is 40°.
If you got 50°, you probably calculated the angle with the terminal arm and the y-axis. Remember to always use the nearest side of the x-axis!
Answer:
C
Step-by-step explanation:
The equation of a line passing through the origin is
y = mx ( m is the slope )
Calculate m using the slope formula
m = (y₂ - y₁ ) / (x₂ - x₁ )
with (x₁, y₁ ) = (0, 0) and (x₂, y₂ ) = (9, 3) ← 2 points on the line
m =
=
=
, thus
y =
x
Or
y =
→ C
Answer:
$32,400
Step-by-step explanation:
We can just replace 12 for x in the equation y = 2700x
y = 2700x
y = 2700(12)
y = 32,400
The money paid after 12 years is $32,400
-Chetan K
Answer:
The value of AB is
and it's not possible to multiply BA.
Step-by-step explanation:
Consider the provided matrices.
, ![B=\left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=B%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
Two matrices can be multiplied if and only if first matrix has an order m × n and second matrix has an order n × v.
Multiply AB
Matrix A has order 2 × 2 and matrix B has order 2 × 1. So according to rule we can multiply both the matrix as shown:
![AB=\left[\begin{array}{ccc}2&3\\2&1\end{array}\right] \left[\begin{array}{ccc}3\\5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%263%5C%5C2%261%5Cend%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3%5C%5C5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}2\times 3+3\times 5\\2\times 3+1\times 5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5Ctimes%203%2B3%5Ctimes%205%5C%5C2%5Ctimes%203%2B1%5Ctimes%205%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}6+15\\6+5\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D6%2B15%5C%5C6%2B5%5Cend%7Barray%7D%5Cright%5D)
![AB=\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=AB%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Hence, the value of AB is ![\left[\begin{array}{ccc}21\\11\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D21%5C%5C11%5Cend%7Barray%7D%5Cright%5D)
Now calculate the value of BA as shown:
Multiply BA
Matrix B has order 2 × 1 and matrix A has order 2 × 2. So according to rule we cannot multiply both the matrix.
We can multiply two matrix if first matrix has an order m × n and second matrix has an order n × v.
That means number of column of first matrix should be equal to the number of rows of second matrix.
Hence, it's not possible to multiply BA.