Answer:
Sam is correct
Step-by-step explanation:
The third side is the one with greatest length. To make a triangle the other two lengths have to be greater than the greatest one when combined.
Hope this Helps.
The computed value must closely match the real value for a model to be considered valid. If the percentage of pleased or very satisfied students remains close to 75% after Mateo surveys additional students, Mateo's model is still viable. The model is faulty if the opposite is true.
<h3>How will mateo know whether his model is valid or not?</h3>
In general, a valid model is one whose estimated value is close to the real value. This kind of model is considered to be accurate. It must be somewhat near to the real value if it doesn't resemble the real value.
If the findings of the survey are sufficiently similar to one another, then the model may be considered valid.
P1 equals 75%, which is the real assessment of the number of happy pupils
P2 is 70 percent; this represents the second assessment of happy pupils
In conclusion, The estimated value of a model has to be somewhat close to the real value for the model to be considered valid. If the number of students who are either pleased or extremely satisfied remains close to 75 percent following Mateo's survey of more students, then Mateo's model is likely accurate. In any other scenario, the model cannot be trusted.
Read more about probability
brainly.com/question/795909
#SPJ1
Answer:
the answer is 0.98
Step-by-step explanation:
if it not correct plz correct me
Answer:
Equation 1
In the story it said Eli's mom doubled the money he left, that is what the two represents. 10 is the original amount he had. -k is the money he lost.
Equation 2
20 is the the result of the original 10 being multiplied. -2k, now the 2 is still the amount that the mom doubled his amount by, and the k is how much money Eli lost.
Hope this helps!!
Answer:
See below.
Step-by-step explanation:
This is how you prove it.
<B and <F are given as congruent.
This is 1 pair of congruent angles for triangles ABC and GFE.
<DEC and <DCE are given as congruent.
Using vertical angles and substitution of transitivity of congruence of angles, show that angles ACB and GEF are congruent.
This is 1 pair of congruent angles for triangles ABC and GFE.
Now you need another side to do either AAS or ASA.
Look at triangle DCE. Using the fact that angles DEC and DCE are congruent, opposite sides are congruent, so segments DC and DE are congruent. You are told segments DF and BD are congruent. Using segment addition postulate and substitution, show that segments CB and EF are congruent.
Now you have 1 pair of included sides congruent ABC and GFE.
Now using ASA, you prove triangles ABC and GFE congruent.