C. Observations and measurements
Answer:
The speed of the baseball is approximately 19.855 m/s
Explanation:
From the question, we have;
The frequency of the microwave beam emitted by the speed gun, f = 2.41 × 10¹⁰ Hz
The change in the frequency of the returning wave, Δf = +3190 Hz higher
The Doppler shift for the microwave frequency emitted by the speed gun which is then reflected back to the gun by the moving baseball is given by 2 shifts as follows;


Where;
Δf = The change in frequency observed, known as the beat frequency = 3190 Hz
= The speed of the baseball
c = The speed of light = 3.0 × 10⁸ m/s
f = The frequency of the microwave beam = 2.41 × 10¹⁰ Hz
By plugging in the values, we have;


The speed of the baseball,
≈ 19.855 m/s
Answer:
Explanation:
Using second degree taylor polynomials
let
be position function and set 
where S(0) is the initial position
Then
and 
we have
, 
so 
b.) yes
Answer:
ΔL = 0.66 m
Explanation:
The change in length on an object due to rise in temperature is given by the following equation of linear thermal expansion:
ΔL = αLΔT
where,
ΔL = Change in Length of the bridge = ?
α = Coefficient of linear thermal expansion = 11 x 10⁻⁶ °C⁻¹
L = Original Length of the Bridge = 1000 m
ΔT = Change in Temperature = Final Temperature - Initial Temperature
ΔT = 40°C - (-20°C) = 60°C
Therefore,
ΔL = (11 x 10⁻⁶ °C⁻¹)(1000 m)(60°C)
<u>ΔL = 0.66 m</u>
Answer:
50
Explanation:
The mechanical advantage of a machine is given by

where
is the output force
is the input force
For the crowbar in this problem,
is the force in input applied by the worker
is the force that the machine must apply in output to overcome the resistance of the window and to open it
Substituting into the equation, we find
