1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
3 years ago
6

This is the change in kinetic energy of a system in which a 16 kg object moving at 25 m/s slows to a velocity of 20 m/s

Physics
1 answer:
Dennis_Churaev [7]3 years ago
5 0

The kinetic energy of an object is given by

KE = 0.5mv²

where m is the mass and v is the velocity.

To calculate the change in kinetic energy...

Initial KE:

KEi = 0.5mVi²

where Vi is the initial velocity.

Final KE:

KEf = 0.5mVf²

where Vf is the final velocity.

ΔKE = KEf - KEi

ΔKE = 0.5mVi² - 0.5mVf²

ΔKE = 0.5m(Vf²-Vi²)

Given values:

m = 16kg

Vi = 25m/s

Vf = 20m/s

Plug in the given values and solve for ΔKE:

ΔKE = 0.5×16×(20²-25²)

ΔKE = -1800J

You might be interested in
An electron moves at 0.130 c as shown in the figure (Figure 1). There are points: A, B, C, and D 2.10 μm from the electron.
Olegator [25]

Hi there!

We can use Biot-Savart's Law for a moving particle:
B= \frac{\mu_0 }{4\pi}\frac{q\vec{v}\times \vec{r}}{r^2 }

B = Magnetic field strength (T)
v = velocity of electron (0.130c = 3.9 × 10⁷ m/s)

q = charge of particle (1.6 × 10⁻¹⁹ C)

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

r = distance from particle (2.10 μm)

There is a cross product between the velocity vector and the radius vector (not a quantity, but specifies a direction). We can write this as:

B= \frac{\mu_0 }{4\pi}\frac{q\vec{v} \vec{r}sin\theta}{r^2 }

Where 'θ' is the angle between the velocity and radius vectors.

a)
To find the angle between the velocity and radius vector, we find the complementary angle:

θ = 90° - 60° = 30°

Plugging 'θ' into the equation along with our other values:

B= \frac{\mu_0 }{4\pi}\frac{q\vec{v} \vec{r}sin\theta}{r^2 }\\\\B= \frac{(4\pi *10^{-7})}{4\pi}\frac{(1.6*10^{-19})(3.9*10^{7}) \vec{r}sin(30)}{(2.1*10^{-5})^2 }

B = \boxed{7.07 *10^{-10} T}

b)
Repeat the same process. The angle between the velocity and radius vector is 150°, and its sine value is the same as that of sin(30°). So, the particle's produced field will be the same as that of part A.

c)

In this instance, the radius vector and the velocity vector are perpendicular so

'θ' = 90°.

B= \frac{(4\pi *10^{-7})}{4\pi}\frac{(1.6*10^{-19})(3.9*10^{7}) \vec{r}sin(90)}{(2.1*10^{-5})^2 } = \boxed{1.415 * 10^{-9}T}

d)
This point is ALONG the velocity vector, so there is no magnetic field produced at this point.

Aka, the radius and velocity vectors are parallel, and since sin(0) = 0, there is no magnetic field at this point.

\boxed{B = 0 T}

3 0
2 years ago
A force of 20N acts on a 3.5kg mass for 10s. What is the change in the speed of the object? *Hint find the impulse first*
Elina [12.6K]

Answer:

<h2>I<em> </em><em>d</em><em>on't</em><em> </em><em>know</em><em> </em><em>sorr</em><em>y</em><em> </em><em>bro</em><em> </em><em /><em> </em><em>.</em><em>.</em><em> </em><em> </em><em> </em><em> </em><em>.</em><em>.</em><em>.</em><em>.</em><em> </em><em>pl</em><em>ease</em><em> </em><em>ma</em><em>ke</em><em> </em><em>me</em><em> </em><em>br</em><em>aniest</em><em> </em></h2>
6 0
3 years ago
A charge is divided q1 and (q-q1)what will be the ratio of q/q1 so that force between the two parts placed at a given distance i
Arturiano [62]

Answer:

q / q_{1} = 2, assuming that q_{1} and (q - q_{1}) are point charges.

Explanation:

Let k denote the coulomb constant. Let r denote the distance between the two point charges. In this question, neither k and r depend on the value of q_{1}.

By Coulomb's Law, the magnitude of electrostatic force between q_{1} and (q - q_{1}) would be:

\begin{aligned}F &= \frac{k\, q_{1}\, (q - q_{1})}{r^{2}} \\ &= \frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\end{aligned}.

Find the first and second derivative of F with respect to q_{1}. (Note that 0 < q_{1} < q.)

First derivative:

\begin{aligned}\frac{d}{d q_{1}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q\, q_{1} - {q_{1}}^{2})\right] \\ &= \frac{k}{r^{2}}\, \left[\frac{d}{d q_{1}} [q\, q_{1}] - \frac{d}{d q_{1}}[{q_{1}}^{2}]\right]\\ &= \frac{k}{r^{2}}\, (q - 2\, q_{1})\end{aligned}.

Second derivative:

\begin{aligned}\frac{d^{2}}{{d q_{1}}^{2}}[F] &= \frac{d}{d q_{1}} \left[\frac{k}{r^{2}}\, (q - 2\, q_{1})\right] \\ &= \frac{(-2)\, k}{r^{2}}\end{aligned}.

The value of the coulomb constant k is greater than 0. Thus, the value of the second derivative of F with respect to q_{1} would be negative for all real r. F\! would be convex over all q_{1}.

By the convexity of \! F with respect to \! q_{1} \!, there would be a unique q_{1} that globally maximizes F. The first derivative of F\! with respect to q_{1}\! should be 0 for that particular \! q_{1}. In other words:

\displaystyle \frac{k}{r^{2}}\, (q - 2\, q_{1}) = 0<em>.</em>

2\, q_{1} = q.

q_{1} = q / 2.

In other words, the force between the two point charges would be maximized when the charge is evenly split:

\begin{aligned} \frac{q}{q_{1}} &= \frac{q}{q / 2} = 2\end{aligned}.

3 0
3 years ago
Do not have definite size and always take the shape of their container,
vekshin1
Liquids is the answer
5 0
3 years ago
Read 2 more answers
What is the weight of an object with a mass of 19 kg?
Natalija [7]

Answer:

Every 2.2 kg is 1 pound. So mulitply 19 * 2.2. It's gonna be equal to 41.8

Explanation:

7 0
2 years ago
Read 2 more answers
Other questions:
  • An engineer is designing a small toy car that a spring will launch from rest along a racetrack. She wants to maximize the kineti
    15·1 answer
  • What is the formula to calculate the readings on an ammeter?
    6·2 answers
  • A 1000-kg aircraft going 25 m/s collides with a 1500-kg aircraft that is parked. They stick
    5·1 answer
  • What is the wavelength (in nm) of a photon emitted during transition from the n = 3 state to the n = 1 state in the H atom?
    6·1 answer
  • WORTH 50 POINTS!!!! PLZ HELP ME!! ASAP!!
    7·1 answer
  • A straight bar magnet is initially 4 cm long, with the north pole on the right and the south pole on the left. if you cut the ma
    14·1 answer
  • What is Parabolic flight
    7·2 answers
  • What is the basis for rutherford's planetary model?
    7·1 answer
  • How many layers of the Earth are there, and what are these layer's names in order from centermost, to outermost, Brainliest for
    5·1 answer
  • As an ambulance siren passes and moves away from you, the sound waves'
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!