Answer:
the tension in the string an instant before it broke = 34 N
Explanation:
Given that :
mass of the ball m = 300 g = 0.300 kg
length of the string r = 70 cm = 0.7 m
At highest point, law of conservation of energy can be expressed as :


The tension in the string is:

Thus, the tension in the string an instant before it broke = 34 N
Answer:
the intensity of the sun on the other planet is a hundredth of that of the intensity of the sun on earth.
That is,
Intensity of sun on the other planet, Iₒ = (intensity of the sun on earth, Iₑ)/100
Explanation:
Let the intensity of light be represented by I
Let the distance of the star be d
I ∝ (1/d²)
I = k/d²
For the earth,
Iₑ = k/dₑ²
k = Iₑdₑ²
For the other planet, let intensity be Iₒ and distance be dₒ
Iₒ = k/dₒ²
But dₒ = 10dₑ
Iₒ = k/(10dₑ)²
Iₒ = k/100dₑ²
But k = Iₑdₑ²
Iₒ = Iₑdₑ²/100dₑ² = Iₑ/100
Iₒ = Iₑ/100
Meaning the intensity of the sun on the other planet is a hundredth of that of the intensity on earth.
Answer:
I'm pretty sure it's the third one where velocity goes from positive to negative
Explanation:
the positive velocity is before the object hits the ground and the negative is after
Answer:
Earth's Tilt and The Seasons. Earth, like all of the planets in the Solar System, travels around the Sun. One complete orbit of the Sun is known as a year and it takes Earth 365 days, 5 hours, 48 minutes and 46 seconds to complete an orbit. The changing seasons are caused by the fact that Earth is tilted. please vote me brainliest i can't message no one cuz i haven't got enough points i'm desperate.
Explanation:
Answer:
0.074m/s
Explanation:
We need the formula for conservation of momentum in a collision, this equation is given by,

Where,
= mass of ball
= mass of the person
= Velocity of ball before collision
= Velocity of the person before collision
= velocity of ball afer collision
= velocity of the person after collision
We know that after the collision, as the person as the ball have both the same velocity, then,


Re-arrenge to find
,

Our values are,
= 0.425kg
= 12m/s
= 68.5kg
= 0m/s
Substituting,


<em />
<em>The speed of the person would be 0.074m/s after the collision between him/her and the ball</em>