Answer
given,
mass of the person, m = 50 Kg
length of scaffold = 6 m
mass of scaffold, M= 70 Kg
distance of person standing from one end = 1.5 m
Tension in the vertical rope = ?
now equating all the vertical forces acting in the system.
T₁ + T₂ = m g + M g
T₁ + T₂ = 50 x 9.8 + 70 x 9.8
T₁ + T₂ = 1176...........(1)
system is equilibrium so, the moment along the system will also be zero.
taking moment about rope with tension T₂.
now,
T₁ x 6 - mg x (6-1.5) - M g x 3 = 0
'3 m' is used because the weight of the scaffold pass through center of gravity.
6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3
6 T₁ = 4263
T₁ = 710.5 N
from equation (1)
T₂ = 1176 - 710.5
T₂ = 465.5 N
hence, T₁ = 710.5 N and T₂ = 465.5 N
Answer:
a) P = 44850 N
b)
Explanation:
Given:
Cross-section area of the specimen, A = 130 mm² = 0.00013 m²
stress, σ = 345 MPa = 345 × 10⁶ Pa
Modulus of elasticity, E = 103 GPa = 103 × 10⁹ Pa
Initial length, L = 76 mm = 0.076 m
a) The stress is given as:
on substituting the values, we get
or
Load, P = 44850 N
Hence<u> the maximum load that can be applied is 44850 N = 44.85 KN</u>
b)The deformation () due to an axial load is given as:
on substituting the values, we get
or
Answer:
all of the above
Explanation:
they all require speed to beat
90 degrees - 30 = 60 degrees
Velocity = (5m/s - 4.35m/s x cos(30)) / cos(60)
Velocity = 2.47 m/s
The answer is D) 2.47 m/s at 61.9 degrees