Answer:E = hc/? = 4.41 x 10-19 J
Energy absorbed by each atom :
E (atom) = 2.205 x 10-19 J
Now Bond Energy of each molecule (B) = 3.98 x J
So, for each atom 1.99 x 10-19 J
So now
KE of each atom = E(atom) - B (atom)
= 2.15 x 10-19 J
The correct answer is D. learn to do a task independently.
Answer:
14.0 m
25.1 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
Distance traveled in the reaction time
Distance = Speed × Time


Distance in which the car will stop is 10+20 = 30.0 m
So, the car will not hit the deer
Distance between the car and deer is 44-30 = 14.0 m



Maximum speed of the car by which it will not hit the deer is 25.1 m/s
Answer:
F= 5195.625 N
Explanation:
To obtain the force needed to hold the child, we need to know the aceleration in which the car is breaking.
Aceleration is equal to velocity divided by the time of breaking
In international system, velocity [m/s] is
v= (62 mi/h)*(1609 m/mi)*(1 h/3600 s)
v= 27.71 m/s
Now, we part the velocity by the time that is 0.08 seconds
a= v/t= (27.71 m/s)/(0.08 s)
a= 346.375 m/
The force in agreement with the Newton's second law is
F=m*a = 15 Kg*346.375 m/
F= 5195.625 N
(Note: 1 N = 1 Kg*m/
)
Explanation : If a bar magnet is suspended at the center on a string and allow to swing freely, then the magnet will rotate so that it will line with the pole of the earth .
So, we can say that when the magnet suspended freely by the string, then the magnet will rotate and stop in north and south direction . The north pole of the magnet will stop in the south direction of the earth and the south pole of the magnet will stop in the north direction of the earth.