We can use the equation for Newtons third law.
fv² - iv² = 2as
Variables:
fv = final velocity (0)
iv = inital velocity (25)
s = distance traveled (?)
a = acceleration (-4.2)
We are given all variables except "s".
Solve for s:
fv² - iv² = 2as
0² - 25² = 2(-4.2)s
625 = -8.4s
74.4 ≈ s
Since 74.4 < 75, the car does not hit the deer.
Best of Luck!
Answer:
I2>I1
Explanation:
This problem can be solved by using the parallel axis theorem. If the axis of rotation of a rigid body (with moment of inertia I1 at its center of mass) is changed, then, the new moment of inertia is gven by:

where M is the mass of the object and d is the distance of the new axis to the axis of the center of mass.
It is clear that I2 is greater than I1 by the contribution of the term Md^2.
I2>I1
hope this helps!!
Answer:
1. G.P.E = 24 J
2. center of mass
Explanation:
Given the following data;
Mass = 2kg
Height, h = 1.2m
Acceleration due to gravity = 9.8 N/kg or m/s².
To find the gravitational potential energy;
Gravitational potential energy (GPE) is an energy possessed by an object or body due to its position above the earth.
Mathematically, gravitational potential energy is given by the formula;

Where;
- G.P.E represents potential energy measured in Joules.
- m represents the mass of an object.
- g represents acceleration due to gravity measured in meters per seconds square.
- h represents the height measured in meters.
Substituting into the formula, we have;

G.P.E = 23.52 to 2 S.F = 24 Joules.
Translation kinetic energy is defined as the energy of a system due to the motion of the system’s center of mass. The center of mass is typically where the mass of the object or particle is concentrated.
Answer:
small car since they weigh less than a bus
Explanation: