Answer:
E = 3.049 N/C
Explanation:
Induced electric field = e/2 *(pi) *r
Induced electric field = e /(3.14 *19.5) - Eq (1)
e = (pi)r^2*B/t
= 3.14 * (19.5/2*100)^2 * 0.50 T/ 0.1
= 1.867 V
Substituting this value in equation 1, we get –
E = 1.867 V/(3.14 *19.5/100)
E = 3.049 N/C
Answer:
D. Freezing water and burning coal
Explanation:
<h2>Answer: 10.52m</h2><h2 />
First, we have to establish the <u>reference system</u>. Let's assume that the building is on the negative y-axis and that the brick was thrown at the origin (see figure attached).
According to this, the initial velocity
has two components, because the brick was thrown at an angle
:
(1)
(2)
(3)
(4)
As this is a projectile motion, we have two principal equations related:
<h2>
In the x-axis:
</h2>
(5)
Where:
is the distance where the brick landed
is the time in seconds
If we already know
and
, we have to find the time (we will need it for the following equation):
(6)
(7)
<h2>
In the y-axis:
</h2>
(8)
Where:
is the height of the building (<u>in this case it has a negative sign because of the reference system we chose)</u>
is the acceleration due gravity
Substituting the known values, including the time we found on equation (7) in equation (8), we will find the height of the building:
(9)
(10)
Multiplying by -1 each side of the equation:
>>>>This is the height of the building