Both expression have the same denominator: 9x²-1. Thus it must not be 0.
9x²-1=(3x-1)(3x+1)=0, resulting x=+-1/3.
Restrictions: x in R\{-1/3, 1/3}
Adding those expressions:
E=(-x-2)/(9x²-1 ) + (-5x+4)/(9x²-1)=
(-x-2-5x+4)/(9x²-1)=(-6x+2)/(9x²-1)=
(-2)(3x-1)/(9x²-1)=-2/(3x+1)
E=-2/(3x+1)
Answer:
y = x*sqrt(Cx - 1)
Step-by-step explanation:
Given:
dy / dx = (x^2 + 5y^2) / 2xy
Find:
Solve the given ODE by using appropriate substitution.
Solution:
- Rewrite the given ODE:
dy/dx = 0.5(x/y) + 2.5(y/x)
- use substitution y = x*v(x)
dy/dx = v + x*dv/dx
- Combine the two equations:
v + x*dv/dx = 0.5*(1/v) + 2.5*v
x*dv/dx = 0.5*(1/v) + 1.5*v
x*dv/dx = (v^2 + 1) / 2v
-Separate variables:
(2v.dv / (v^2 + 1) = dx / x
- Integrate both sides:
Ln (v^2 + 1) = Ln(x) + C
v^2 + 1 = Cx
v = sqrt(Cx - 1)
- Back substitution:
(y/x) = sqrt(Cx - 1)
y = x*sqrt(Cx - 1)
Answer: I believe the answer would be 1/9 ?
Answer:
16
Step-by-step explanation:
22-6=16 ;0
Answer:
A and c
Step-by-step explanation:
If im correct A and C is the answer because A and C represent the vertical angles :)