Given Information:
Current = I = 20 A
Diameter = d = 0.205 cm = 0.00205 m
Length of wire = L = 1 m
Required Information:
Energy produced = P = ?
Answer:
P = 2.03 J/s
Explanation:
We know that power required in a wire is
P = I²R
and R = ρL/A
Where ρ is the resistivity of the copper wire 1.68x10⁻⁸ Ω.m
L is the length of the wire and A is the area of the cross-section and is given by
A = πr²
A = π(d/2)²
A = π(0.00205/2)²
A = 3.3x10⁻⁶ m²
R = ρL/A
R = 1.68x10⁻⁸*(1)/3.3x10⁻⁶
R = 5.09x10⁻³ Ω
P = I²R
P = (20)²*5.09x10⁻³
P = 2.03 Watts or P = 2.03 J/s
Therefore, 2.03 J/s of energy is produced in 1.00 m of 12-gauge copper wire carrying a current of 20 A
Answer:
The angle of separation is
Explanation:
From the question we are told that
The angle of incidence is 
The refractive index of violet light in diamond is 
The refractive index of red light in diamond is 
The wavelength of violet light is
The wavelength of red light is
Snell's Law can be represented mathematically as

Where
is the angle of refraction
=> 
Now considering violet light

substituting values




Now considering red light

substituting values




The angle of separation between the red light and the violet light is mathematically evaluated as

substituting values


Answer:
65.73N
Explanation:
The frictional force is a force that opposes the motion of an object on a flat surface or an inclined surface.
It is always acting up an incline plane .
Since the pipe will tend to roll up the plane, then both the impending force P also known as frictional force and the moving force Fm both will be acting up the plane.
The net force acting up the plane is
Fnet = P + Fm... (1)
The force perpendicular to the plane known as the normal reaction R must be equal to the force acting along the ramp in other to keep the body in equilibrium i.e R = Fnet
If R = W = mgcos (theta)
and Fm = mgsin(theta)
Then mgcos theta = Fnet
mgcos (theta) = P+Fm
mgcos (theta) = P+mgsin(theta)
P = mgcos (theta) - mgsin(theta)... (2)
Given mass = 10kg
g = 9.81m/s
We can get theta from the formula;
µ = Ff/R = wsin theta/wcos theta
µ = sin theta/cos theta
µ = tan(theta)
0.3 = tan (theta)
theta = arctan0.3
theta = 16.7°
P = 10(9.81)cos16.7° - 10(9.81)sin16.7°
P = 98.1(cos16.7°-sin16.7°)
P = 98.1(0.67)
P = 65.73N
The minimum force P required to cause impending motion is 65.73N
Answer:
1. In a coal-fired power plant, chemical energy is first converted to thermal energy. TRUE.
The chemical energy in the coal is converted to thermal energy when the coal is burnt to produce steam.
2. In a coal-fired power plant, approximately 2/5 of original energy in the coal is lost to heat. FALSE.
Approximately 3/5 of the original energy is lost not 2/5 so this statement is false.
3. The molecules in cold air move faster than in hot air. FALSE.
Molecules with more heat move faster than molecules with less. Molecules in cold air therefore, will move slower than molecules in hot air.