1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ira Lisetskai [31]
3 years ago
14

What dose air taste like and wrong answer only

Physics
2 answers:
Lunna [17]3 years ago
7 0

Answer:

air tast like nothing

Explanation:

zalisa [80]3 years ago
6 0

Answer:

two pretty best friends -

Explanation:

You might be interested in
Are temperature and thermal energy the same thing justify your answer
Sever21 [200]
Temperature is the measurement of the average energy of the particles in a solid, liquid or gas and thermal energy is the total energy in a set amount of solid, liquid or gas. Therefore, the temperature and thermal energy is not the same thing. They are both about the particle theory, which is a theory that all particles of solid, liquid or gas are always in motion. But the difference between the two is that temperature is the "measurement" of the particles in a solid, liquid or gas and the thermal energy is the total energy in a set amount of solid, liquid or gas.
6 0
4 years ago
A 70.0-kg person throws a 0.0480-kg snowball forward with a ground speed of 33.5 m/s. A second person, with a mass of 55.0 kg, c
saw5 [17]

Answer:

The final velocity of the thrower is \bf{3.88~m/s} and the final velocity of the catcher is \bf{0.029~m/s}.

Explanation:

Given:

The mass of the thrower, m_{t} = 70~Kg.

The mass of the catcher, m_{c} = 55~Kg.

The mass of the ball, m_{b} = 0.0480~Kg.

Initial velocity of the thrower, v_{it} = 3.90~m/s

Final velocity of the ball, v_{fb} = 33.5~m/s

Initial velocity of the catcher, v_{ic} = 0~m/s

Consider that the final velocity of the thrower is v_{ft}. From the conservation of momentum,

&& m_{t}v_{ft} + m_{b}v_{fb} = (m_{t} + m_{b})v_{it}\\&or,& v_{ft} = \dfrac{(m_{t} + m_{b})v_{it} - m_{b}v_{fb}}{m_{t}}\\&or,& v_{ft} = \dfrac{(70 + 0.0480)(3.90) - (0.0480)(33.5)}{70}\\&or,& v_{ft} = 3.88~m/s

Consider that the final velocity of the catcher is v_{fc}. From the conservation of momentum,

&& (m_{c} + m_{b})v_{fc} = m_{b}v_{it}\\&or,& v_{fc} = \dfrac{m_{b}v_{it}}{(m_{c} + m_{b})}\\&or,& v_{fc} = \dfrac{(0.048)(33.5)}{(55.0 + 0.0480)}\\&or,& v_{fc} = 0.029~m/s

Thus, the final velocity of thrower is 3.88~m/s and that for the catcher is 0.029~m/s.

8 0
3 years ago
A sample has a density of 30 g/ml. there is 60 ml of this substance.how much does it weigh?
aleksandrvk [35]
If each mL has 30 grams of the substance in it, then 60 mL have 1800 grams of mass in them. the weight of 1,800 grams of mass on Earth is (1.8 kg) x (9.8 m/s^2) = 17.6 newtons.
3 0
4 years ago
What is the weight of a 4.2 kg bowling ball on Mars?
Nataliya [291]

What is the weight of a 4.2 kg bowling ball on Mars?

Answer:

1.59 kg

Explanation:

The formula is:

<u>F = G((Mm)/r2) </u>

F is the gravitational force between two objects,

G is the Gravitational Constant (6.674×10-11 Newtons x meters2 / kilograms2),

M is the planet's mass (kg),

m is your mass (kg), and

r is the distance (m) between the centers of the two masses (the planet's radius).

Hope this helps

--Jay

8 0
3 years ago
Two blocks are connected by a light weight, flexible cord that passes over a frictionless pulley.Ifm1=2 kg and m2 = 3 kg, and bl
Vera_Pavlovna [14]

Answer:

t = 1.41 sec.

Explanation:

If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.

First, we need to find the value of  acceleration, which is the same for both blocks.

If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:

F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)

⇒ a = (\frac{(m₂-m₁)}({m₁+m₂} * g = g/5 m/s²

Once we got the value of a, we can use for instance this kinematic equation, and solve for t:

Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.

6 0
3 years ago
Other questions:
  • 61 pts!!!!!!!!!!!!!!!!!!!
    10·2 answers
  • An object is falling downward at a rate of 25 m/s. Two seconds later, what is its acceleration?
    11·1 answer
  • What is the power when a crane lifts a piece of pipe from the ground to a certain height, doing 15000 J of work in 25s?
    13·1 answer
  • a 1430 kg car speeds up from 7.50 m/s to 11.0 m/s in 9.30 s. Ignoring friction, how much power did that require?
    15·1 answer
  • Find h , the maximum height attained by the projectile. express the maximum height in terms of v 0 , θ , and g .
    11·1 answer
  • Marcia pokes fun at her husband Brian because he loves to sing in the shower every morning, but
    13·1 answer
  • Describe the medium that electromagnetic waves use to travel
    14·1 answer
  • A 3.2 kg particle starts from rest at x = 0 and moves under the influence of a single force Fx = 4 + 15.7 x − 1.5 x 2 , where Fx
    15·1 answer
  • The position equation for a particle is s of t equals the square root of the quantity 2 times t plus 1 where s is measured in fe
    11·1 answer
  • QUESTION 4
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!