1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MatroZZZ [7]
3 years ago
15

Math Exploration

Physics
1 answer:
Airida [17]3 years ago
5 0

Question: What is the frequency of a wave that has a wave speed of 120 m/s and a wavelength of 0.40 m?

Answer: The equation that relates frequency of a wave to a waves speed and wavelength is Speed of Wave= Frequency X Wavelength. Since you are given speed and wavelength, you plug those two known numbers into the equation, 120= Frequency X 0.40. You then divide 120 by .4 to get your frequency of 300.

Explanation: this might help for

You might be interested in
What initially unknown quantity, together with the wavelength, is sufficient to calculate the stopping potential for 400 nmnm li
kondaur [170]

Answer:

The initially known quantity, together with the wavelength, that is sufficient to calculate the stopping potential for electrons from the surface of a metal is called the WORK FUNCTION.

Explanation:

The stopping potential is defined as the potential that is required to stop electrons from being ejected from the surface of a metal when light with energy greater than the metal's work function/work potential is incident on the metal.

Given that light is known to be made up of photons, which carry energy in packets according to the frequencies of the light.

The photoelectric phenomenon explains that when light of a certain frequency that corresponds to an energy level that is higher than a metal's work function is incident on a metal, it will lead to electrons being ejected from the surface of the metal. The energy of the ejected electrons is then proportional to the difference between the energy level of the photons and the metal's work function.

Basically, it is the excess energy after overcoming the work function that rejects the electrons.

So, to prevent this excess energy from ejecting electrons from a metal's surface, an energy thay matches this excess must be in place to stop electrons from coming out. This energy/potential required to stop the ejection of electrons, is called the stopping potential.

The stopping potential is given as

eV₀ = hf - ϕ

The stopping potential (eV₀) them depends on the hf and the ϕ.

hf is the energy of the photons, where h is Planck's constant and f is the photons' frequency which is further given as

f = (c/λ)

c = speed of light (speed of the photons)

λ = wavelength of the photons.

The other quantity, ϕ, is the metal's work function; the amount of energy needed to be overcome by the photons before ejection of electrons is possible. It is the minimum energy that the light photoms must possess to even stand a chance of being able to eject electrons from a metal's surface.

So, the stopping potential is the difference between the energy of the photons (obtained using the photons' frequency, wavelength and/or speed) and the metal's work function.

Hope this Helps!!!!

3 0
4 years ago
At what temperature the semiconductor behaves like conductor?​
hammer [34]

Answer:

A semiconductor acts like an ideal insulator at absolute zero temperature that is at zero kelvin. It is because the free electrons in the valence band of semiconductors will not carry enough thermal energy to overcome the forbidden energy gap at absolute zero.

5 0
3 years ago
For any molecule, formula unit, or ion, the sum of the average atomic masses of all the atoms represented in a formula is the.
alukav5142 [94]

The mass of a substance is given in atomic mass units and is calculated by adding the average atomic masses of all the atoms in the substance's chemical formula.

<h3>What empirical formula represents the total average atomic mass of every atom?</h3>

The Method The average atomic masses of all the atoms included in a formula's representation are added to get the mass of any molecule, formula unit, or ion. It has no bearing on the number of significant figures because the number of atoms is an exact quantity. One H2O molecule weighs 18.02 amu on average.

<h3>What connection exists between the empirical formula and the molecular formula?</h3>

You can determine the number of atoms of each element in a molecule using its molecular formula. These empirical formulations provide the most basic or reduced elemental ratio of a compound. The empirical formula and the molecular formula of a substance are same if the molecular formula can no longer be decreased.

To know more about atomic mass visit:-

brainly.com/question/17067547

#SPJ4

5 0
1 year ago
A supernova is a large explosion that takes place at the end of a star's life cycle. Although supernovas only burn for a short a
Aleonysh [2.5K]
I’m pretty sure it’s c
8 0
3 years ago
A 1300-N crate rests on the floor. How much work is required to move it at constant speed (a)
kherson [118]

a) The work done is 920 J

b) The work done is 5200 J

Explanation:

a)

In this first part of the problem, the crate is moved horizontally at constant speed.

The work required in this case is given by

W=Fd cos \theta

where

F is the magnitude of the force applied

d is the displacement of the crate

\theta is the angle between the direction of the force and of the displacement

Here the crate is moved at constant speed: this means that the acceleration of the crate is zero, and so according to Newton's second law, the net force on the crate is zero: this means that the force applied, F, must be equal to the force of friction (but in opposite direction), so

F = 230 N

The displacement is

d = 4.0 m

And the angle is \theta=0^{\circ}, since the force is applied horizontally. Therefore, the work done is

W=(230)(4.0)(cos 0^{\circ})=920 J

b)

In this case, the crate is moved vertically. The force that must be applied to lift the crate must be equal to the weight of the crate (in order to move it a constant speed), therefore

F = W = 1300 N

The displacement this time is again

d = 4.0 m

And the angle is \theta=0^{\circ}, since the force is applied vertically, and the crate is moved also vertically. Therefore, the work done on the crate this time is

W=(1300)(4.0)(cos 0^{\circ})=5200 J

Learn more about work:

brainly.com/question/6763771

brainly.com/question/6443626

#LearnwithBrainly

4 0
3 years ago
Other questions:
  • Upper section of the lithosphere
    5·2 answers
  • A car accelerates uniformly in a straight line
    7·1 answer
  • Calculate the kinetic energy of a 4kg cat running 5m/s
    12·1 answer
  • A batter hits a baseball with a bat. The bat exerts a force on the ball. Does the ball exert a force on the bat?
    6·2 answers
  • A certain nuclear power plant is capable of producing 1.2×10^9 W of electric power. During operation of the reactor, mass is con
    15·1 answer
  • Which of the following statements about protons are false? Check all that apply. Check all that apply. Protons have about the sa
    12·1 answer
  • Kriste walks once around a large circle at a constant speed.
    5·1 answer
  • Transferring messages from a motor neuron to an arm muscle requires the neurotransmitter known as: (2 points)
    12·1 answer
  • 1. Kevin had a small blue crystal of unknown composition and a large green anhydrous crystal of
    7·1 answer
  • A charge of 0.50 C moves horizontally in a magnetic field of 1.0 T with a speed of 4.0 x 10^2 m/s. The force experienced by the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!