Answer:
The mass of a single paper is approximately 0.047 lb/paper which in SI Units is approximately 21.77 g/paper
Explanation:
The given information on the size and the weight of paper are;
The mass of a box of 500 sheets of paper = 24 lb
The number of sheets in the paper = 500 sheets
The dimensions of the paper = 17 in. × 22 in., which is equivalent to 43.18 cm × 55.88 cm
The mass of a single paper = The mass of the box of paper/(The number of sheets of paper present in the box)
The mass of a single paper = 24 lb/500 = 0.047 lb/paper
Given that 1 lb = 453.6 g, we have;
0.047 lb/paper = 0.047 lb/paper×453.6 g/(lb) = 21.77 g/paper
The mass of a single paper = 0.047 lb/paper = 21.77 g/paper.
Missing questions: "find the speed of the electron".
Solution:
the magnetic force experienced by a charged particle in a magnetic field is given by

where
q is the particle charge
v its velocity
B the magnitude of the magnetic field

the angle between the directions of v and B.
Re-arranging the formula, we find:

and by substituting the data of the problem (the charge of the electron is

), we find the velocity of the electron:
Heat, like sound, is kinetic energy. Molecules at higher temperatures heave more energy, thus they can vibrate faster. Since the molecules vibrate faster, sound waves can travel more quickly.
So the answer is A.
The different reflections of light through two separate mediums causes the bending of wave fronts associated with light rays. The reflection and refraction is caused by the medium associated with its light rays.