Explanation:
it is equal to the speed (v) of a wave train in a medium divided by its frequency (f): λ = v/f. Waves of different wavelengths.
<span>An example of a high energy electromagnetic wave is "X-Ray"
When car runs, it's chemical energy (gasoline) converts into mechanical energy
Temperature is the measure of hotness or coldness of the body, so when heat expose to a substance, it's degree of hotness increases & it's temperature increases
Hope this helps!
</span>
Answer:
a) ![W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J](https://tex.z-dn.net/?f=W_%7Bg%7D%3Dmdx%20%3D%200.21%20kg%20%2A9.8%5Cfrac%7Bm%7D%7Bs%5E2%7D%200.10m%3D0.2058%20J)
b) ![W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J](https://tex.z-dn.net/?f=W_%7Bspring%7D%3D%20-%5Cfrac%7B1%7D%7B2%7D%20Kx%5E2%20%3D-%5Cfrac%7B1%7D%7B2%7D%20200%20N%2Fm%20%280.1m%29%5E2%3D-1%20J)
c) ![V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s](https://tex.z-dn.net/?f=V_i%20%3D%5Csqrt%7B2%20%5Cfrac%7BW_g%20%2B%20W_%7Bspring%7D%7D%7B0.21%20kg%7D%7D%7D%3D%5Csqrt%7B2%20%5Cfrac%7B%281-0.2058%29%7D%7B0.21%20kg%7D%7D%7D%3D2.75m%2Fs)
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:
![W_{g}=mdx = 0.21 kg *9.8\frac{m}{s^2} 0.10m=0.2058 J](https://tex.z-dn.net/?f=W_%7Bg%7D%3Dmdx%20%3D%200.21%20kg%20%2A9.8%5Cfrac%7Bm%7D%7Bs%5E2%7D%200.10m%3D0.2058%20J)
Part b
For this case first we can convert the spring constant to N/m like this:
![2 \frac{N}{cm} \frac{100cm}{1m}=200 \frac{N}{m}](https://tex.z-dn.net/?f=2%20%5Cfrac%7BN%7D%7Bcm%7D%20%5Cfrac%7B100cm%7D%7B1m%7D%3D200%20%5Cfrac%7BN%7D%7Bm%7D)
And the work donde by the spring on this case is given by:
![W_{spring}= -\frac{1}{2} Kx^2 =-\frac{1}{2} 200 N/m (0.1m)^2=-1 J](https://tex.z-dn.net/?f=W_%7Bspring%7D%3D%20-%5Cfrac%7B1%7D%7B2%7D%20Kx%5E2%20%3D-%5Cfrac%7B1%7D%7B2%7D%20200%20N%2Fm%20%280.1m%29%5E2%3D-1%20J)
Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:
![W_{g} +W_{spring} = K_{f} -K_{i}=0- \frac{1}{2} m v^2_i](https://tex.z-dn.net/?f=%20W_%7Bg%7D%20%2BW_%7Bspring%7D%20%3D%20K_%7Bf%7D%20-K_%7Bi%7D%3D0-%20%5Cfrac%7B1%7D%7B2%7D%20m%20v%5E2_i)
And if we solve for the initial velocity we got:
![V_i =\sqrt{2 \frac{W_g + W_{spring}}{0.21 kg}}}=\sqrt{2 \frac{(1-0.2058)}{0.21 kg}}}=2.75m/s](https://tex.z-dn.net/?f=V_i%20%3D%5Csqrt%7B2%20%5Cfrac%7BW_g%20%2B%20W_%7Bspring%7D%7D%7B0.21%20kg%7D%7D%7D%3D%5Csqrt%7B2%20%5Cfrac%7B%281-0.2058%29%7D%7B0.21%20kg%7D%7D%7D%3D2.75m%2Fs)
Part d
Let d1 represent the new maximum distance, in order to find it we know that :
![-1/2mV^2_i = W_g + W_{spring}](https://tex.z-dn.net/?f=-1%2F2mV%5E2_i%20%3D%20W_g%20%2B%20W_%7Bspring%7D)
And replacing we got:
![-1/2mV^2_i =mg d_1 -1/2 k d^2_1](https://tex.z-dn.net/?f=-1%2F2mV%5E2_i%20%3Dmg%20d_1%20-1%2F2%20k%20d%5E2_1)
And we can put the terms like this:
![\frac{1}{2} k d^2_1 -mg d_1 -1/2 m V^2_i =0](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%20k%20d%5E2_1%20-mg%20d_1%20-1%2F2%20m%20V%5E2_i%20%3D0)
If we multiply all the equation by 2 we got:
![k d^2_1 -2 mg d_1 -m V^2_i =0](https://tex.z-dn.net/?f=%20k%20d%5E2_1%20-2%20mg%20d_1%20-m%20V%5E2_i%20%3D0)
Now we can replace the values and we got:
![200N/m d^2_1 -0.21kg(9.8m/s^2)d_1 -0.21 kg(5.50 m/s)^2) =0](https://tex.z-dn.net/?f=200N%2Fm%20d%5E2_1%20-0.21kg%289.8m%2Fs%5E2%29d_1%20-0.21%20kg%285.50%20m%2Fs%29%5E2%29%20%3D0)
![200 d^2_1 -2.058 d_1 -6.3525=0](https://tex.z-dn.net/?f=200%20d%5E2_1%20-2.058%20d_1%20-6.3525%3D0)
And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
English: Cardiovascular efficiency depends on a number of factors. One measure is called stroke volume, which is the volume of blood pumped per heartbeat. A fit individual has a larger stroke volume, which means a greater volume of oxygen is delivered to the body per heartbeat.
Spanish: La eficacia cardiovascular depende de una serie de factores. Una medida se denomina volumen sistólico, que es el volumen de sangre bombeada por latidos cardíacos. Un individuo en forma tiene un volumen de movimiento mayor, lo que significa que un mayor volumen de oxígeno es entregado al cuerpo por latidos cardíacos.