Answer:
<em><u>The potential area of wind power in the country is about 6074 sq. km with wind power density greater than 300 watt/m2. More than 3,000 MW of electricity could be generated at 5 MW per sq km. The commercially viable wind potential of the country is estimated to be only about 448 MW.</u></em>
Answer:
15.75 m
Explanation:
First, let's look at the top brick by itself. In order for it not to tip over the bottom brick, its center of gravity must be right at the edge of the bottom brick. So the edge of the top brick must be 10.5 m from the edge of the bottom brick.
Now let's look at both bricks as a combined mass. We know the total length of this combined brick is 10.5 m + 21 m = 31.5 m. And we know that for it to not tip over the edge of the surface, its center of gravity must be at the edge. So the edge of the combined brick must be 31.5 m / 2 = 15.75 m from the edge of the surface.
Answer:
1. Hydrogen
2. Helium
Explanation:
Nuclear fusion is when two atoms of Hydrogen join together to form one Helium atom.
(a) The time for the capacitor to loose half its charge is 2.2 ms.
(b) The time for the capacitor to loose half its energy is 1.59 ms.
<h3>
Time taken to loose half of its charge</h3>
q(t) = q₀e-^(t/RC)
q(t)/q₀ = e-^(t/RC)
0.5q₀/q₀ = e-^(t/RC)
0.5 = e-^(t/RC)
1/2 = e-^(t/RC)
t/RC = ln(2)
t = RC x ln(2)
t = (12 x 10⁻⁶ x 265) x ln(2)
t = 2.2 x 10⁻³ s
t = 2.2 ms
<h3>
Time taken to loose half of its stored energy</h3>
U(t) = Ue-^(t/RC)
U = ¹/₂Q²/C
(Ue-^(t/RC))²/2C = Q₀²/2Ce
e^(2t/RC) = e
2t/RC = 1
t = RC/2
t = (265 x 12 x 10⁻⁶)/2
t = 1.59 x 10⁻³ s
t = 1.59 ms
Thus, the time for the capacitor to loose half its charge is 2.2 ms and the time for the capacitor to loose half its energy is 1.59 ms.
Learn more about energy stored in capacitor here: brainly.com/question/14811408
#SPJ1