Positive ions are atoms that have lost an electron from its outtermost shell. It is positive because electrons are negative and the loss of something negative makes it a bit more positive.
A negative ion is larger than its original atom because it's gained an electron.
The more electrons an atomic has on its electron cloud, the bigger the atom.
Hopefully I didn't confuse you, good luck. ♡
Answer:

Explanation:
Hello,
In this case, we employ the combined ideal gas law in order to understand the volume-gas-pressure behavior as shown below:

Hence, solving for the final pressure P2, we obtain (do not forget temperature must be absolute):

Best regards.
The characteristics of the α and β particles allow to find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the beta particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
In Rutherford's experiment, the positive particles directed to the gold film were measured on a phosphorescent screen that with each arriving particle a luminous point is seen.
The particles in this experiment are α particles that have two positive charge and two no charged is a helium nucleus.
The test that can be carried out is to place a small ours of Thorium in front of a phosphorescent screen and see if it has flashes, with the amount of them we can determine the amount of particle emitted per unit of time.
Thorium has several isotopes, with different rates and types of emission:
- ²³²Th emits α particles, it is the most abundant 99.9%
- ²³⁴Th emits β particles, exists in small traces.
In this case they indicate that the material used is ²³⁴Th, which emits β particles that are electrons, the detection of these particles is more difficult since it has one negative charge, it has much lower mass, but they can travel further than the particles α, therefore, for what type of isotope we have, we can start measuring at a small distance and increase the distance until the reading is constant. At this point all the particles that arrive are β, which correspond to ²³⁴Th.
Neutron detection is much more difficult since these particles have no charge and therefore do not interact with electrons and no flashing on the screen is varied.
In conclusion with the characteristics of the α and β particles we can find the design of an experiment to measure the ²³⁴Th particles is:
-
On a screen, measure the emission as a function of distance and when the value reaches a constant, there is the β particle emission from ²³⁴Th.
- The neutrons cannot be detected in this experiment because they have no electrical charge.
Learn more about radioactive emission here: brainly.com/question/15176980
Answer:
a. The skull could support as much as 3 tons of weight.
Explanation:
The true statement about brain is
a. The skull could support as much as 3 tons of weight.
The cranium(skull) bones are slot like a jigsaw puzzle together. All but one of these bones is fixed in place in adults. It makes the skull very solid. Babies have holes between the cranial (skull) bones so that as they are born, their heads may withstand being crushed.
rest all statements are wrong.
The amount of Silicon left after 300 years is 75g
It is given that the initial amount of Si is 100 times decay is 300 years and the half-life of Silicon is 710 years.
The radioactive decay formula is given by,
A = A₀ x 2^(-t/h);
where;
A is the resulting amount after t time, Ao is the initial amt (t=0),t is the time of decay, and h is the half-life of the substance.
On substituting the values from the given we get,
A = 100x2^(-300/710)
A = 100 x 0.746112347
A = 74.6112347 grams left after 300 yrs
Therefore, the number of grams of silicon left after 300 years is 74.6112347g. This value could be rounded off to 75 grams as in the whole number
To know more about half-life, click below:
brainly.com/question/1160651
#SPJ4