Answer:
43.868 J
Explanation:
Kinetic energy of a body is the amount of energy possessed by a moving body. The SI unit of kinetic energy is the joule (kg⋅m²⋅s⁻²).
According to classical mechanics, kinetic energy = 1/2 m·v²
Where, m= mass in kg and v= velocity in m/s
Given: m = 19.2 lb and v = 7.10 miles/h
Since, 1 lb= 0.453592 kg
∴ m = 19.2 lb = 19.2 × 0.453592 kg = 8.709 kg
Also, 1 mi = 1609.34 m and 1 h = 3600 sec
∴ v = 7.10 mi/h = 7.10 × 1609.34 m ÷ 3600 sec = 3.174 m/sec
Therefore, <u>kinetic energy of the goose</u> = 1/2 m·v² = 1/2 × (8.709 kg)× (3.174 m/sec)² = 43.868 J
The lighted half of the moon faces away from the earth during the New Moon phase
Answer:
A hydrocarbon containing a carbon - carbon double bond.
Explanation:
Alkene is hydrocarbon containing a
carbon - carbon double bond.
( Refer the attachment to understand more clearly )
Answer:
The reaction will move to the left.
Explanation:
<em>Ba(OH)₂ = Ba²⁺ + 2OH⁻,</em>
<em>Ba(OH)₂ is dissociated to Ba²⁺ and 2OH⁻.</em>
- If H⁺ ions are added to the equilibrium:
H⁺ will combine with OH⁻ to form water.
<em>So, the concentration of OH⁻ will decrease and the equilibrium is disturbed.</em>
<em />
<em>According to Le Châtelier's principle: </em>when there is an dynamic equilibrium, and this equilibrium is disturbed by an external factor, the equilibrium will be shifted in the direction that can cancel the effect of the external factor to reattain the equilibrium.
- So, the reaction will move to the right to suppress the effect of decreasing OH⁻ concentration.
- The base will dissociate to form more OH⁻ and thus, the quantity of Ba(OH)₂ will decrease.
<em>So, the right choice is: the reaction will move to the left, is the choice that will not happen to the equilibrium.</em>