The reaction between copper II chloride and sodium sulfide as well as lead II nitrate and potassium sulfate both produce precipitates.
The solubility of a substance in water is in accordance with the solubility rules. It is possible that a solid product may be formed when two aqueous solutions are mixed together. That solid product is referred to as a precipitate.
Now, we will consider each reaction individually to decode whether or not a precipitate is possible.
- In the first reaction, we have; CuCl2(aq) + Na2S(aq) ---->CuS(s) + 2NaCl(aq). A precipitate (CuS) is formed.
- In the second reaction, Pb(NO3)2(aq) + 2KNO3(aq) ----> PbSO4(s) + KNO3(aq), a precipitate PbSO4 is formed
- In the third reaction, NH4Br(aq) + NaOH(aq) ----->NH3(g) + NaBr(aq) + H2O(l), a precipitate is not formed here.
Learn more: brainly.com/question/11969651
Answer:
1.76 g/mL
Explanation:
You need to find the volume. You can do this by subtracting the volume of the water and the rock by the volume of the water.
72.7 mL - 50 mL = 22.7 mL
Now that you have volume, divide the mass by the volume to find the density.
39.943 g/22.7 mL = 1.76 g/mL
Answer:
2C2H6 + 7O2 --> 4CO2 + 6H20
Explanation:
Balanced equation
Answer:
The answer to your question is it is not at equilibrium, it will move to the products.
Explanation:
Data
Keq = 2400
Volume = 1 L
moles of NO = 0.024
moles of N₂ = 2
moles of O₂ = 2.6
Process
1.- Determine the concentration of reactants and products
[NO] = 0.024 / 1 = 0.024
[N₂] = 2/1 = 2
[O₂] = 2.6/ 1= 2.6
2.- Balanced chemical reaction
N₂ + O₂ ⇒ 2NO
3.- Write the equation for the equilibrium of this reaction
Keq = [NO]²/[N₂][O₂]
- Substitution
Keq = [0.024]² / [2][2.6]
-Simplification
Keq = 0.000576 / 5.2
-Result
Keq = 1.11 x 10⁻⁴
Conclusion
It is not at equilibrium, it will move to the products because the experimental Keq was lower than the Keq theoretical-
1.11 x 10⁻⁴ < 2400