Hey there!:
Detailed solution is shown below ask if any doubt :
Answer:
See Explanation
Explanation:
Given that;
N/No = (1/2)^t/t1/2
Where;
No = amount of radioactive isotope originally present
N = A mount of radioactive isotope present at time t
t = time taken
t1/2 = half life
N/1000=(1/2)^3/6
N/1000=(1/2)^0.5
N = (1/2)^0.5 * 1000
N= 707 unstable nuclei
Since the value of the initial activity of the radioactive material was not given, the activity of the radioactive material after three months is given by;
Decay constant = 0.693/t1/2 = 0.693/6 months = 0.1155 month^-1
Hence;
A=Aoe^-kt
Where;
A = Activity after a time t
Ao = initial activity
k = decay constant
t = time taken
A = Aoe^-3 *0.1155
A=Aoe^-0.3465
Answer:
Electrical force can pull and push
Explanation:
Yes it is available. It will continue catalyzing the reactions until it becomes completely consumed. That's how enzymes work. They work and are eventually consumed in the process completely without altering the reaction in any way other than speeding it up.
<span />