Answer:
I = 1.06886 N s
Explanation:
The expression for momentum is
I = F t = Δp
therefore the momentum is a vector quantity, for which we define a reference system parallel to the floor
Let's find the components of the initial velocity
sin 28.2 = v_y / v
cos 28.2= vₓ / v
v_y = v sin 282
vₓ = v cos 28.2
v_y = 42.8 sin 28.2 = 20.225 m / s
vₓ = 42.8 cos 28.2 = 37.72 m / s
since the ball is heading to the ground, the vertical velocity is negative and the horizontal velocity is positive, it can also be calculated by making
θ = -28.2
v_y = -20.55 m / s
v_x = 37.72 m / s
X axis
Iₓ = Δpₓ = 
since the ball moves in the x-axis without changing the velocity, the change in moment must be zero
Δpₓ = m
- m v₀ₓ = 0
v_{fx} = v₀ₓ
therefore
Iₓ = 0
Y axis
I_y = Δp_y = p_{fy} -p_{oy}
when the ball reaches the floor its vertical speed is downwards and when it leaves the floor its speed has the same modulus but the direction is upwards
v_{fy} = - v_{oy}
Δp_y = 2 m v_{oy}
Δp_y = 2 0.0260 (20.55)
= 1.0686 N s
the total impulse is
I = Iₓ i ^ + I_y j ^
I = 1.06886 j^ N s
Answer:
It requires <u>1.9 seconds</u> to reach maximum height.
Explanation:
As per given question,
Initial velocity (U) =19 m/s
Final velocity (V) = 0 m/s

Maximum height = S
Time taken is "t"
<u>Calculating time taken to reach maximum height:</u>
We know that time taken to reach the maximum height is calculated by using the formula V = U + at
Substitute the given values in the above equation.
Final velocity is “0” as there is no velocity at the maximum height.



t = 1.9 seconds.
The time taken to reach maximum height is <u>1.9</u> seconds.
<u>Calculating maximum height</u>:

Solving the equation we will get the value of S

-361 = -20S
Negative sign cancel both the sides.

S = 18.05 m
Maximum height is 18.05 m .
Psychological disorder is a kind of disease, related to brain functioning, they are very different, but can't be distinguished at high level so they are not extremely different
In short, Your Answer would be: "False"
Hope this helps!