Answer:
Skeletal system provide strength and protection to heart and also produces essential blood cells such as RBC and WBC
Explanation:
All organ systems in our body work in co-ordination with each other. Skeletal system comprised of bones and cartilages while cardiovascular system comprises of hearts, blood and blood vessels. Firstly the skeletal system protects the heart and also assists in its pumping along with muscle. Secondly, the blood cells such as RBC and WBC are circulated by the blood throughout the body. However these cells are produced in the bone marrow (inside the bones)
Answer:
<em><u>D. The first flowering plants were introduced toward the end of the Mesozoic era.</u></em>
<em><u /></em>
Explanation:
Following the Paleozoic Era, the Mesozoic Era or <em>Age of Conifers</em> began approximately 250 million years ago. This major geological era brought about the ancestors of many of the plant and animal groups still in existence today.
The Mesozoic era is marked by 3 divisions:
- the Triassic Period,
- the Jurassic Period,
- and the Cretaceous Period.
Animals and plants slowly recovered after the mass extinction in the Permian-Triassic extinction that led to the eradication of most aquatic marine species. They evolved to exploit varying niches in their environment, leading to a boom in terrestrial animals. Over time the planet's increasingly warm climate, abundant in atmospheric oxygen and carbon dioxide, contributed to the growth of diverse megaflora, that rapidly dominated the planet's terrestrial biosphere.
By the end of the <em>Mesozoic Era</em>, in the Cretaceous period, flowering plants (angiosperms) largely replaced the dominant seed ferns of the <em>Triassic</em>, and the conifers, cycads and gymnosperms of the <em>Jurassic</em>.
<em>Varied dispersal mechanisms in angiosperms co-evolved with the evolution of certain types of fauna. Plants used animal life, including herbivorous reptiles and early mammal-like species to disperse large seeds.</em>
This is True . the reabsorption through the proximal tubule is obligatory 80% whereas water reabsorption through distal tubule is facultative but mostly through collector tubules 15 % ( under the action of aldosteron and antidiuretic hormone).
The three examples of cycles of inorganic nutrients are Nitrogen, carbon and sulphur cycle.
Nitrogen is required to make amino acids and DNA in organisms. Carbon is the main component of glucose through which organism make energy, about 18 per-cent of the human body comprises carbon. Sulphur is an important constituent of some proteins, amino acids and enzyme cofactors.
Explanation:
The biogeochemical cycles like the nitrogen cycle are responsible for converting nitrogen into many chemical forms as nitrates, nitrites, ammonia. This process involves degrade decomposing animal and plant matter and naturally cleaning the environment also nitrites and nitrates become biofertilizers. The plants take nitrogen through their roots and in turn primary consumer in food chain ie. organisms consume the plant and eventually releases nitrogen as a waste material, dead and decaying body to the soil and cycle goes on.
In the carbon cycle the carbon is exchanged from the atmosphere to the organisms and then again to the environment. Plants perform photosynthesis by using carbon dioxide, primary consumer eats it and gets nutrition to perform cellular respiration, in turn, gets energy which gets dissipated and stored as biomass eventually in the course consumer die and replenish the soil with carbon. The Carbon emitted will keep cycling through air, water and soil.
The sulphur cycle involves the movement of sulphur between rocks, water and living beings and plants. Plants ( producers) absorb sulphur dissolved in water and animal consume these plants to replenish their sulphur requirement. And when organism die, sulphur enter the cycle again.
There will be a transfer of these inorganic nutrients to the trophic level in food chain.