Answer: Option (D) is the correct answer.
Explanation:
An electric circuit works well when all the connections are complete but if any of the connections in the circuit is loose or disconnected then it is possible that current will not flow from the circuit.
Therefore, when Jenna removed one of the clips on the battery then circuit becomes incomplete and as a result there will no flow of current.
Thus, we can conclude that the electrical energy would stop because the circuit is incomplete.
<span>The filament of the light bulb will get very hot. This will encourage a chemical reaction with most gases that are surrounding that filament - and the result is that the filament burns out. If the filament is in air, it combines with the carbon of carbon dioxide in the air, and the filament disintegrates. But argon is an inert gas - almost nothing reacts with it. So the filament takes a very long time (theoretically infinity) to burn out. But the bulb cannot contain 100% argon: 99.9% is typical; the remaining 0.1% being air. The bulb manufacturers can control the 'life' of a bulb, based on that principle: they do not want their bulbs to last forever!</span>
The latent heat is correlated with energy as follows:
Q = mL
550 * 103 = 14 * 103 * L
L = 39.285 J /g
Thus, latent heat of the substance is 39.285 j /g
Answer:
the Molar heat of Combustion of diphenylacetylene
= 
Explanation:
Given that:
mass of diphenylacetylene
= 0.5297 g
Molar Mass of diphenylacetylene
= 178.21 g/mol
Then number of moles of diphenylacetylene
= 
= 
= 0.002972 mol
By applying the law of calorimeter;
Heat liberated by 0.002972 mole of diphenylacetylene
= Heat absorbed by
+ Heat absorbed by the calorimeter
Heat liberated by 0.002972 mole of diphenylacetylene
= msΔT + cΔT
= 1369 g × 4.184 J g⁻¹°C⁻¹ × (26.05 - 22.95)°C + 916.9 J/°C (26.05 - 22.95)°C
= 17756.48 J + 2842.39 J
= 20598.87 J
Heat liberated by 0.002972 mole of diphenylacetylene
= 20598.87 J
Heat liberated by 1 mole of diphenylacetylene
will be = 
= 6930979.139 J/mol
= 6930.98 kJ/mol
Since heat is liberated ; Then, the Molar heat of Combustion of diphenylacetylene
= 
Those would be called indicators , simply google them and you should find many. I'll leave some examples "bromophenol blue" "Methyl red" and "phenol red".