Answer:
2 moles
Explanation:
In one mole of O2 there are 16 grams. So in 2 moles there are 32 grams
Answer:
11.45kcal/g
2.612 × 10³ kcal
Explanation:
When a compound burns (combustion) it produces carbon dioxide and water. The combustion of 2-methylheptane can be represented by the following balanced equation:
2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O
It releases 1.306 × 10³ kcal every 1 mol of C₈H₁₈ that is burned.
<em>What is the heat of combustion for 2-methylheptane in kcal/gram?</em>
We know that the molar mass of C₈H₁₈ is 114.0g/mol. Then, using proportions:

<em>How much heat will be given off if molar quantities of 2-methylheptane react according to the following equation? 2 C₈H₁₈ + 25 O₂ ⇄ 16 CO₂ + 18 H₂O</em>
In this equation we have 2 moles of C₈H₁₈. So,

Complete Question:
This diagram shows a marble with a mass of 3.8 grams (g) that was placed into 10 milliliters (mL) of water. Using the formula V M D = , what is the density of the marble?
(See attachment for full diagram)
Answer:
1.27 g/cm³
Explanation:
First, find the volume of rock:
Volume of rock = volume of water after rock was placed - volume of water before rock was placed
Volume of rock = 13 - 10 = 3ml
Density of rock = grams of rock per 1 cm³
Note: 1 ml = 1 cm³
Let x represent amount of rock per 1 cm³
Thus,
3.8g = 3 cm³
x = 1 cm³
Cross multiply
1*3.8 = 3*x
3.8 = 3x
3.8/3 = 3x/3
1.27 = x
Density of rock = 1.27 g/cm³
Answer:
89 L
Explanation:
Step 1: Given data
- Initial pressure (P₁): 0.97 atm
- Initial volume (V₁): 105 L
- Initial temperature (T₁): 318 K
- Final pressure (P₂): 1.05 atm
- Final temperature (T₂): 293 K
Step 2: Calculate the final volume of the weather balloon
If we assume that the gas inside the balloon behaves as an ideal gas, we can calculate the final volume of the gas using the combined gas law.
P₁ × V₁ / T₁ = P₂ × V₂ / T₂
V₂ = P₁ × V₁ × T₂ / T₁ × P₂
V₂ = 0.97 atm × 105 L × 293 K / 318 K × 1.05 atm = 89 L
Answer:
.5 gm / ml
Explanation:
Density is defined as mass/ volume
so density of this substance is 5 gm / 10 ml = .5 gm/ ml