<em>So</em><em> </em><em>the</em><em> </em><em>right</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>6</em><em>5</em><em>.</em>
<em>Look</em><em> </em><em>at</em><em> </em><em>the</em><em> </em><em>attached</em><em> </em><em>picture</em>
<em>H</em><em>ope</em><em> </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em><em>.</em>
<em>G</em><em>ood</em><em> </em><em>luck</em><em> </em><em>on</em><em> </em><em>your</em><em> </em><em>assignment</em>
<em>~</em><em>p</em><em>r</em><em>ã</em><em>g</em><em>y</em><em>â</em>
Answer:
$4.59
Step-by-step explanation:
20 - 1.20 - 5.03 = 13.77
13.77/3 = 4.59
The average value of a continuous function f(x) over an interval [a, b] is
![\displaystyle f_{\mathrm{ave}[a,b]} = \frac1{b-a}\int_a^b f(x)\,dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Cmathrm%7Bave%7D%5Ba%2Cb%5D%7D%20%3D%20%5Cfrac1%7Bb-a%7D%5Cint_a%5Eb%20f%28x%29%5C%2Cdx)
We're given that
![\displaystyle f_{\rm ave[-1,2]} = \frac13 \int_{-1}^2 f(x) \, dx = -4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Crm%20ave%5B-1%2C2%5D%7D%20%3D%20%5Cfrac13%20%5Cint_%7B-1%7D%5E2%20f%28x%29%20%5C%2C%20dx%20%3D%20-4)
![\displaystyle f_{\rm ave[2,7]} = \frac15 \int_2^7 f(x) \, dx = 8](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Crm%20ave%5B2%2C7%5D%7D%20%3D%20%5Cfrac15%20%5Cint_2%5E7%20f%28x%29%20%5C%2C%20dx%20%3D%208)
and we want to determine
![\displaystyle f_{\rm ave[-1,7]} = \frac18 \int_{-1}^7 f(x) \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Crm%20ave%5B-1%2C7%5D%7D%20%3D%20%5Cfrac18%20%5Cint_%7B-1%7D%5E7%20f%28x%29%20%5C%2C%20dx)
By the additive property of definite integration, we have

so it follows that
![\displaystyle f_{\rm ave[-1,7]} = \frac18 \left(\int_{-1}^2 f(x)\,dx + \int_2^7 f(x)\,dx\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Crm%20ave%5B-1%2C7%5D%7D%20%3D%20%5Cfrac18%20%5Cleft%28%5Cint_%7B-1%7D%5E2%20f%28x%29%5C%2Cdx%20%2B%20%5Cint_2%5E7%20f%28x%29%5C%2Cdx%5Cright%29)
![\displaystyle f_{\rm ave[-1,7]} = \frac18 \left(3\times(-4) + 5\times8\right)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Crm%20ave%5B-1%2C7%5D%7D%20%3D%20%5Cfrac18%20%5Cleft%283%5Ctimes%28-4%29%20%2B%205%5Ctimes8%5Cright%29)
![\displaystyle f_{\rm ave[-1,7]} = \boxed{\frac72}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20f_%7B%5Crm%20ave%5B-1%2C7%5D%7D%20%3D%20%5Cboxed%7B%5Cfrac72%7D)
Answer:
My answer is D) y = 2(x - 2.5)^2 + 6
I hope it helps
Answer:
The value of y is y = -8x + 1.
Step-by-step explanation:

▪Happy To Help <3