Answer: (1). There are 0.0165 moles of gaseous arsine (AsH3) occupy 0.372 L at STP.
(2). The density of gaseous arsine is 3.45 g/L.
Explanation:
1). At STP the pressure is 1 atm and temperature is 273.15 K. So, using the ideal gas equation number of moles are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the values into above formula as follows.

2). As number of moles are also equal to mass of a substance divided by its molar mass.
So, number of moles of Arsine
(molar mass = 77.95 g/mol) is as follows.

Density is the mass of substance divided by its volume. Hence, density of arsine is calculated as follows.

Thus, we can conclude that 0.0165 moles of gaseous arsine (AsH3) occupy 0.372 L at STP and the density of gaseous arsine is 3.45 g/L.
Answer:
He put segregationists in charge of federal agencies...
Explanation:
...
Answer:
a. changes with temperature.
Explanation:
Hello there!
In this case, according to the thermodynamic definition of the equilibrium constant in terms of the Gibbs free energy of reaction and the temperature of the system:

It is possible to figure out that the equilibrium constant varies as temperature does, not only on the aforementioned definition, but also in the Gibbs free energy as it is also temperature-dependent. Therefore, the appropriate answer is a. changes with temperature.
Best regards!
The volume of NH₃ produced at STP : 0.237 L
<h3>Further explanation</h3>
Reaction
N₂ + 3H₂ → 2NH₃
1 mol = 6.02 x 10²³ particles
9.6 X 10²¹ molecules of Hydrogen, mol :

mol H₂ : mol NH₃ = 3 : 2
mol NH₃ :

Conditions at T 0 ° C and P 1 atm are stated by STP (Standard Temperature and Pressure). <em>At STP, Vm is 22.4 liters/mol.</em>
The volume of NH₃ :

<em />