Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital
Answer:
The answers are in the explanation.
Explanation:
The energy required to convert 10g of ice at -10°C to water vapor at 120°C is obtained per stages as follows:
Increasing temperature of ice from -10°C - 0°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 2.06J/g°C, ΔT is change in temperature = 0°C - -10°C = 10°C and m is mass of ice = 10g
Q = 2.06J/g°C*10°C*10g
Q = 206J
Change from solid to liquid:
The heat of fusion of water is 333.55J/g. That means 1g of ice requires 333.55J to be converted in liquid. 10g requires:
Q = 333.55J/g*10g
Q = 3335.5J
Increasing temperature of liquid water from 0°C - 100°C:
Q = S*ΔT*m
Q is energy, S specific heat of ice = 4.18J/g°C, ΔT is change in temperature = 100°C - 0°C = 100°C and m is mass of water = 10g
Q = 4.18J/g°C*100°C*10g
Q = 4180J
Change from liquid to gas:
The heat of vaporization of water is 2260J/g. That means 1g of liquid water requires 2260J to be converted in gas. 10g requires:
Q = 2260J/g*10g
Q = 22600J
Increasing temperature of gas water from 100°C - 120°C:
Q = S*ΔT*m
Q is energy, S specific heat of gaseous water = 1.87J/g°C, ΔT is change in temperature = 20°C and m is mass of water = 10g
Q = 1.87J/g°C*20°C*10g
Q = 374J
Total Energy:
206J + 3335.5 J + 4180J + 22600J + 374J =
30695.5J =
30.7kJ
Name Arsenic
Atomic Mass 74.9216 atomic mass units
Number of Protons 33
Number of Neutrons 42
Number of Electrons 33
Answer:
The older scientist were ignorant
Explanation:
they thought that they were better than the younger scientist. to put it in simply they were ignorant to think younger is worse