<h3><u>Answer;</u></h3>
M.A = 4.25
<h3><u>Explanation;</u></h3>
Mechanical advantage is the ratio of the force required to do something in comparison to the actual force required using a simple machine.
It is the ratio of output force to the input force.
M.A = Output Force/ Input Force
Out put force 85 Kg = 850 N
Input force = 200 N
Therefore;
M.A = 850 N/200 N
= 4.25
Answer:
8-5=3
The bigger force is to the left
3N to the left
Explanation:
Explanation:
The first attachment contains the complete question while the second attachment is the solution.
These are some potential dangers of synthetic drug abuse
Answer:
c. remains the same, but the RPMs decrease.
Explanation:
Because there aren't external torques on the system composed by the person and the turntable it follows that total angular momentum (I) is conserved, that means the total angular momentum is a constant:

The total angular momentum is the sum of the individual angular momenta, in our case we should sum the angular momentum of the turntable and the angular momentum of a point mass respect the center of the turntable (the person)
(1)
The angular momentum of the turntable is:
(2)
with I the moment of inertia and ω the angular velocity.
The angular momentum of the person respects the center of the turntable is:
(3)
with r the position of the person respects the center of the turntable, m the mass of the person and v the linear velocity
Using the fact
:
(3)
By (3) and (2) on (1) and working only the magnitudes (it's all that we need for this problem):


Because the equality should be maintained, if we increase the distance between the person and the center of the turntable (r), the angular velocity should decrease to maintain the same constant value because I and m are constants, so the RPM's (unit of angular velocity) are going to decrease.